
Vehicle Network Toolbox™
User's Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Vehicle Network Toolbox™ User's Guide
© COPYRIGHT 2009–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2009 Online only New for Version 1.0 (Release 2009a)
September 2009 Online only Revised for Version 1.1 (Release 2009b)
March 2010 Online only Revised for Version 1.2 (Release 2010a)
September 2010 Online only Revised for Version 1.3 (Release 2010b)
April 2011 Online only Revised for Version 1.4 (Release 2011a)
September 2011 Online only Revised for Version 1.5 (Release 2011b)
March 2012 Online only Revised for Version 1.6 (Release 2012a)
September 2012 Online only Revised for Version 1.7 (Release 2012b)
March 2013 Online only Revised for Version 2.0 (Release 2013a)
September 2013 Online only Revised for Version 2.1 (Release 2013b)
March 2014 Online only Revised for Version 2.2 (Release 2014a)
October 2014 Online only Revised for Version 2.3 (Release 2014b)
March 2015 Online only Revised for Version 2.4 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)
September 2017 Online only Revised for Version 3.4 (Release 2017b)
March 2018 Online only Revised for Version 4.0 (Release 2018a)
September 2018 Online only Revised for Version 4.1 (Release 2018b)
March 2019 Online only Revised for Version 4.2 (Release 2019a)
September 2019 Online only Revised for Version 4.3 (Release 2019b)
March 2020 Online only Revised for Version 4.4 (Release 2020a)
September 2020 Online only Revised for Version 4.5 (Release 2020b)
March 2021 Online only Revised for Version 5.0 (Release 2021a)
September 2021 Online only Revised for Version 5.1 (Release 2021b)

Getting Started
1

Vehicle Network Toolbox Product Description . 1-2

Toolbox Characteristics and Capabilities . 1-3
Vehicle Network Toolbox Characteristics . 1-3
Interaction Between the Toolbox and Its Components 1-4
Prerequisite Knowledge . 1-5

MathWorks Virtual Channels . 1-6
Description . 1-6
Examples . 1-6

Vehicle Network Communication in MATLAB . 1-8
Transmit Workflow . 1-8
Receive Workflow . 1-9

Transmit and Receive CAN Messages . 1-10
Discover Installed Hardware . 1-10
Create CAN Channels . 1-10
Configure Channel Properties . 1-12
Start the Channels . 1-13
Create a Message . 1-14
Pack a Message . 1-15
Transmit a Message . 1-15
Receive a Message . 1-16
Unpack a Message . 1-19
Save and Load CAN Channels . 1-19
Disconnect Channels and Clean Up . 1-19

Filter Messages . 1-21

Multiplex Signals . 1-22

Configure Silent Mode . 1-25

Hardware Support Package Installation
2

Install Hardware Support Package for Device Driver 2-2
Install Support Packages . 2-2
Update or Uninstall Support Packages . 2-2

v

Contents

CAN Communication Workflows
3

CAN Transmit Workflow . 3-2

CAN Receive Workflow . 3-3

Using a CAN Database
4

Load .dbc Files and Create Messages . 4-2
Vector CAN Database Support . 4-2
Load the CAN Database . 4-2
Create a CAN Message . 4-2
Access Signals in the Constructed CAN Message 4-3
Add a Database to a CAN Channel . 4-3
Update Database Information . 4-3

View Message Information in a CAN Database . 4-5

View Signal Information in a CAN Message . 4-7

Attach a CAN Database to Existing Messages . 4-8

XCP Communication Workflows
5

XCP Database and Communication Workflow . 5-2

Universal Measurement & Calibration Protocol (XCP)
6

XCP Hardware Connection . 6-2
Create XCP Channel Using CAN Device . 6-4
Configure the Channel to Unlock the Server . 6-4

Read a Single Value . 6-6

Write a Single Value . 6-7

Read a Calibrated Measurement . 6-8

Acquire Measurement Data via Dynamic DAQ Lists 6-9

Stimulate Measurement Data via Dynamic STIM Lists 6-10

vi Contents

J1939
7

J1939 Interface . 7-2

J1939 Parameter Group Format . 7-3

J1939 Network Management . 7-4
Address Claiming . 7-4

J1939 Transport Protocols . 7-5

J1939 Channel Workflow . 7-6

CAN Communications in Simulink
8

Vehicle Network Toolbox Simulink Blocks . 8-2

CAN Communication Workflows in Simulink . 8-3
Message Transmission Workflow . 8-3
Message Reception Workflow . 8-4

Open the Vehicle Network Toolbox Block Library . 8-6
Using the Simulink Library Browser . 8-6
Using the MATLAB Command Window . 8-6

Build CAN Communication Simulink Models . 8-7
Build the Message Transmit Part of the Model . 8-7
Build the Message Receive Part of the Model . 8-9
Save and Run the Model . 8-13

Create Custom CAN Blocks . 8-15
Blocks Using Simulink Buses . 8-15
Blocks Using CAN Message Data Types . 8-16

Supported Block Features . 8-18
CAN Communication . 8-18
CAN FD Communication . 8-18
XCP Communication . 8-19
J1939 Communication . 8-19

Timing in Hardware Interface Models . 8-21
Simulation Time . 8-21
Block Sample Time . 8-21
Pacing Model Simulation . 8-22

vii

Hardware Limitations
9

Vector Hardware Limitations . 9-2

Kvaser Hardware Limitations . 9-3

National Instruments Hardware Limitations . 9-4

File Format Limitations . 9-5
MDF-File . 9-5
CDFX-File . 9-5
BLF-File . 9-5

Platform Support . 9-6

Troubleshooting MDF Applications . 9-7
Error When Creating mdf Object . 9-7
Error When Reading an MDF-File . 9-7
Error When Reading an MDFDatastore . 9-7
Unable to Find Specific Channel . 9-7
Unable to Save MDF Attachments . 9-8
Unable to Read Array Channel Structures . 9-8
Unable to Read MIME and CANopen Data . 9-8
Table Column Names Do Not Match Channel Names 9-8

XCP Communications in Simulink
10

Vehicle Network Toolbox XCP Simulink Blocks . 10-2

Open the Vehicle Network Toolbox XCP Block Libraries 10-3
Using the MATLAB Command Window . 10-3
Using the Simulink Library Browser . 10-3

viii Contents

Functions
11

Properties by Class
12

Blocks
13

Vehicle Network Toolbox Examples
14

Get Started with CAN Communication in MATLAB 14-3

Get Started with CAN FD Communication in MATLAB 14-7

Use Message Reception Callback Functions in CAN Communication . 14-11

Use Message Filters in CAN Communication . 14-14

Use DBC-Files in CAN Communication . 14-21

Periodic CAN Communication in MATLAB . 14-29

Event-Based CAN Communication in MATLAB . 14-35

Use Relative and Absolute Timestamps in CAN Communication 14-38

Get Started with J1939 Parameter Groups in MATLAB 14-45

Get Started with J1939 Communication in MATLAB 14-50

Periodic CAN Message Transmission Behavior in Simulink 14-56

Event-Based CAN Message Transmission Behavior in Simulink 14-59

Set up Communication Between Host and Target Models 14-70

Log and Replay CAN Messages . 14-73

Get Started with J1939 Communication in Simulink 14-77

Get Started with MDF-Files . 14-79

ix

Read Data from MDF-Files . 14-83

Get Started with MDF Datastore . 14-88

CAN Connectivity in a Robotics Application . 14-95

CAN Connectivity in an Automotive Application 14-99

Get Started with CAN FD Communication in Simulink 14-102

Forward Collision Warning Application with CAN FD and TCP/IP . . . 14-105

Data Analytics Application with Many MDF-Files 14-110

Log and Replay CAN FD Messages . 14-116

Map Channels from MDF-Files to Simulink Model Input Ports 14-120

Get Started with CDFX-Files . 14-126

Use CDFX-Files with Simulink . 14-131

Use CDFX-Files with Simulink Data Dictionary 14-135

Develop an App Designer App for a Simulink Model Using CAN 14-139

Programmatically Build Simulink Models for CAN Communication . 14-162

Class-Based Unit Testing of Automotive Algorithms via CAN 14-169

Decode CAN Data from BLF-Files . 14-174

Decode CAN Data from MDF-Files . 14-178

Read Data from MDF-Files with Applied Conversion Rules 14-184

Receive and Visualize CAN Data Using CAN Explorer 14-192

Receive and Visualize CAN FD Data Using CAN FD Explorer 14-198

Decode J1939 Data from BLF-Files . 14-204

Decode J1939 Data from MDF-Files . 14-209

Replay J1939 Logged Field Data to a Simulation 14-215

Calibrate XCP Characteristics . 14-219

Get Started with A2L-Files . 14-231

Analyze Data Using MDF Datastore and Tall Arrays 14-236

Read XCP Measurements with Dynamic DAQ Lists 14-247

x Contents

Get Started with CAN Communication in Simulink 14-253

Work with Unfinalized and Unsorted MDF-Files 14-256

CAN Message Reception Behavior in Simulink 14-260

Read XCP Measurements with Direct Acquisition 14-265

xi

Getting Started

• “Vehicle Network Toolbox Product Description” on page 1-2
• “Toolbox Characteristics and Capabilities” on page 1-3
• “MathWorks Virtual Channels” on page 1-6
• “Vehicle Network Communication in MATLAB” on page 1-8
• “Transmit and Receive CAN Messages” on page 1-10
• “Filter Messages” on page 1-21
• “Multiplex Signals” on page 1-22
• “Configure Silent Mode” on page 1-25

1

Vehicle Network Toolbox Product Description
Communicate with in-vehicle networks using CAN, J1939, and XCP protocols

Vehicle Network Toolbox provides MATLAB® functions and Simulink® blocks for sending, receiving,
encoding, and decoding CAN, CAN FD, J1939, and XCP messages. The toolbox lets you identify and
parse specific signals using industry-standard CAN database files and then visualize the decoded
signals using the CAN Explorer and CAN FD Explorer apps. Using A2L description files, you can
connect to an ECU via XCP on CAN or Ethernet. You can access messages and measurement data
stored in MDF files.

The toolbox simplifies communication with in-vehicle networks and lets you monitor, filter, and
analyze live CAN bus data or log and record messages for later analysis and replay. You can simulate
message traffic on a virtual CAN bus or connect to a live network or ECU. Vehicle Network Toolbox
supports CAN interface devices from Vector, Kvaser, PEAK-System, and NI®.

1 Getting Started

1-2

Toolbox Characteristics and Capabilities
In this section...
“Vehicle Network Toolbox Characteristics” on page 1-3
“Interaction Between the Toolbox and Its Components” on page 1-4
“Prerequisite Knowledge” on page 1-5

Vehicle Network Toolbox Characteristics
The toolbox is a collection of functions built on the MATLAB technical computing environment.

You can use the toolbox to:

• “Connect to CAN Devices” on page 1-3
• “Use Supported CAN Devices and Drivers” on page 1-3
• “Communicate Between MATLAB and CAN Bus” on page 1-3
• “Simulate CAN Communication” on page 1-3
• “Visualize CAN Communication” on page 1-3

Connect to CAN Devices

Vehicle Network Toolbox provides host-side CAN connectivity using defined CAN devices. CAN is the
predominant protocol in automotive electronics by which many distributed control systems in a
vehicle function.

For example, in a common design when you press a button to lock the doors in your car, a control unit
in the door reads that input and transmits lock commands to control units in the other doors. These
commands exist as data in CAN messages, which the control units in the other doors receive and act
on by triggering their individual locks in response.

Use Supported CAN Devices and Drivers

You can use Vehicle Network Toolbox to communicate over the CAN bus using supported Vector,
Kvaser, PEAK-System, or National Instruments® devices and drivers.

See “Vehicle Network Toolbox Supported Hardware” for more information.

Communicate Between MATLAB and CAN Bus

Using a set of well-defined functions, you can transfer messages between the MATLAB workspace
and a CAN bus using a CAN device. You can run test applications that can log and record CAN
messages for you to process and analyze. You can also replay recorded sequences of messages.

Simulate CAN Communication

With Vehicle Network Toolbox block library and other blocks from the Simulink library, you can create
sophisticated models to connect to a live network and to simulate message traffic on a CAN bus.

Visualize CAN Communication

Using the CAN Explorer or CAN FD Explorer app, you can monitor message traffic on a selected
device and channel. You can then analyze these messages.

 Toolbox Characteristics and Capabilities

1-3

Interaction Between the Toolbox and Its Components
Vehicle Network Toolbox is a conduit between MATLAB and the CAN bus.

In this illustration:

• Six CAN modules are attached to a CAN bus.
• One module, which is a CAN device, is attached to the Vehicle Network Toolbox, built on the

MATLAB technical computing environment.

Using Vehicle Network Toolbox from MATLAB, you can configure a channel on the CAN device to:

• Transmit messages to the CAN bus.
• Receive messages from the CAN bus.
• Trigger a callback function to run when the channel receives a message.
• Attach the database to the configured CAN channel to interpret received CAN messages.
• Use the CAN database to construct messages to transmit.
• Log and record messages and analyze them in MATLAB.
• Replay live recorded sequence of messages in MATLAB.
• Build Simulink models to connect to a CAN bus and to simulate message traffic.
• Monitor CAN traffic with the CAN Explorer or CAN FD Explorer.

1 Getting Started

1-4

Vehicle Network Toolbox is a comprehensive solution for CAN connectivity in MATLAB and Simulink.
Refer to the Functions and Simulink Blocks for more information.

Prerequisite Knowledge
The Vehicle Network Toolbox document set assumes that you are familiar with these products:

• MATLAB — To write scripts and functions, and to use functions with the command-line interface.
• Simulink — To create simple models to connect to a CAN bus or to simulate those models.
• Vector CANdb — To understand CAN databases, along with message and signal definitions.

 Toolbox Characteristics and Capabilities

1-5

MathWorks Virtual Channels
Description
To facilitate code prototyping and model simulation without hardware, Vehicle Network Toolbox
provides a MathWorks® virtual CAN device with two channels. These channels are identified with the
vendor "MathWorks" and the device "Virtual 1", and are accessible in both MATLAB and
Simulink.

These virtual channels support CAN, CAN FD, and J1939 communication on Windows®, and support
CAN and CAN FD on Linux®. Many examples throughout the documentation show how to use these
virtual channels, so that you can run them on your own system.

The two virtual channels belong to a common device, so you could send a message on channel 1 and
have that message received on channel 1 and channel 2. But because the virtual device is an
application-level representation of a CAN/CAN FD bus without an actual bus, the following limitations
apply:

• The virtual interface does not perform low level protocol activity like arbitration, error frames,
acknowledgment, and so on.

• Although you can connect multiple channels of the same virtual device in the same MATLAB
session or in Simulink models running in that MATLAB session, you cannot use virtual channels to
communicate between different MATLAB sessions.

Examples
You can view the device and channels in MATLAB with the canChannelList function.

canChannelList

ans =

 2×6 table

 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 ___________ ___________ _______ ___________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"

Create a virtual CAN channel.

canch = canChannel("MathWorks","Virtual 1",1);

Create a virtual CAN FD channel.

canfdch = canFDChannel("MathWorks","Virtual 1",2);

Create a virtual J1939 channel.

db = canDatabase([(matlabroot) '/examples/vnt/data/J1939.dbc']);
jch = j1939Channel(db,"MathWorks","Virtual 1",1);

See Also
Functions
canChannelList | canChannel | j1939Channel

1 Getting Started

1-6

More About
• “Transmit and Receive CAN Messages” on page 1-10

 MathWorks Virtual Channels

1-7

Vehicle Network Communication in MATLAB
Workflows in this section are sequential to help you understand how the communication works.

Transmit Workflow

1 Getting Started

1-8

Receive Workflow

See Also

More About
• “Transmit and Receive CAN Messages” on page 1-10

 Vehicle Network Communication in MATLAB

1-9

Transmit and Receive CAN Messages
In this section...
“Discover Installed Hardware” on page 1-10
“Create CAN Channels” on page 1-10
“Configure Channel Properties” on page 1-12
“Start the Channels” on page 1-13
“Create a Message” on page 1-14
“Pack a Message” on page 1-15
“Transmit a Message” on page 1-15
“Receive a Message” on page 1-16
“Unpack a Message” on page 1-19
“Save and Load CAN Channels” on page 1-19
“Disconnect Channels and Clean Up” on page 1-19

Discover Installed Hardware
In the example, you discover your system CAN devices with canChannelList, then create two CAN
channels using canChannel. Later, you edit the properties of the first channel and create a message
using canMessage, then transmit the message from the first channel using transmit, and receive it
on the other channel using receive.

1 Get information about the CAN hardware devices on your system.

info = canChannelList

info =

 14×6 table

 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 _____________ _______________________ _______ _____________________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "Vector" "VN1610 1" 1 "VN1610" "CAN, CAN FD" "18959"
 "Vector" "VN1610 1" 2 "VN1610" "CAN, CAN FD" "18959"
 "Vector" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "Vector" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "PEAK-System" "PCAN-USB Pro" 1 "PCAN-USB Pro" "CAN, CAN FD" "0"
 "PEAK-System" "PCAN-USB Pro" 2 "PCAN-USB Pro" "CAN, CAN FD" "0"
 "Kvaser" "USBcan Professional 1" 1 "USBcan Professional" "CAN" "10680"
 "Kvaser" "USBcan Professional 1" 1 "USBcan Professional" "CAN" "10680"
 "Kvaser" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "Kvaser" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "NI" "9862 CAN/HS (CAN1)" 1 "9862" "CAN, CAN FD" "17F5094"
 "NI" "9862 CAN/HS (CAN2)" 1 "9862" "CAN, CAN FD" "17F50B2"

Note To modify this example for a hardware CAN device, make a loopback connection between the
two channels.

Create CAN Channels
Create two MathWorks virtual CAN channels.

1 Getting Started

1-10

canch1 = canChannel('MathWorks','Virtual 1',1)
canch2 = canChannel('MathWorks','Virtual 1',2)

canch1 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

canch2 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0

 Transmit and Receive CAN Messages

1-11

 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

For each channel, notice that its initial Running value is 0 (stopped), and its bus speed is 500000.

Note You cannot use the same variable to create multiple channels sequentially. Clear any channel
before using the same variable to construct a new CAN channel.

You cannot create arrays of CAN channel objects. Each object you create must be assigned to its own
scalar variable.

Configure Channel Properties
You can set the behavior of your CAN channel by configuring its property values. For this exercise,
change the bus speed of channel 1 to 250000 using the configBusSpeed function.

Tip Configure property values before you start the channel.

1 Change the bus speed of both channels to 250000, then view the channel BusSpeed property to
verify the setting.

configBusSpeed(canch1,250000)
canch1.BusSpeed

ans =

 250000

2 You can also see the updated bus speed in the channel display.

canch1

canch1 =

1 Getting Started

1-12

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

3 In a similar way, change the bus speed of the second channel.

configBusSpeed(canch2,250000)

Start the Channels
After you configure their properties, start both channels. Then view the updated status information of
the first channel.

start(canch1)
start(canch2)
canch1

canch1 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'

 Transmit and Receive CAN Messages

1-13

 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 1
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: 23-May-2019 15:43:40
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

Notice that the channel Running property value is now 1 (true).

Create a Message
After you set all the property values as desired and your channels are running, you are ready to
transmit and receive messages on the CAN bus. For this exercise, transmit a message using canch1
and receive it using canch2. To transmit a message, create a message object and pack the message
with the required data.

Build a CAN message with a standard type ID of 500, and a data length of 8 bytes.

messageout = canMessage(500,false,8)

messageout =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 500
 Extended: 0
 Name: ''

 Data Details
 Timestamp: 0

1 Getting Started

1-14

 Data: [0 0 0 0 0 0 0 0]
 Signals: []
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: []
 UserData: []

Some of the properties of the message indicate:

• Error — A logical 0 (false) because the message is not an error.
• Remote — A logical 0 (false) because the message is not a remote frame.
• ID — The ID you specified.
• Extended — A logical 0 (false) because you did not specify an extended ID.
• Data — A uint8 array of 0s, with size specified by the data length.

Refer to the canMessage function to understand more about its input arguments.

Pack a Message
After you create the message, pack it with the required data.

1 Use the pack function to pack your message with these input parameters: a Data value of 25,
start bit of 0, signal size of 16, and byte order using little-endian format. View the message Data
property to verify the settings.

pack(messageout,25,0,16,'LittleEndian')
messageout.Data

ans =

 1×8 uint8 row vector

 25 0 0 0 0 0 0 0

The only message property that changes from packing is Data. Refer to the pack function to
understand more about its input arguments.

Transmit a Message
Now you can transmit the packed message. Use the transmit function, supplying the channel
canch1 and the message as input arguments.

transmit(canch1,messageout)
canch1

canch1 =

 Transmit and Receive CAN Messages

1-15

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 1
 MessagesAvailable: 1
 MessagesReceived: 0
 MessagesTransmitted: 1
 InitializationAccess: 1
 InitialTimestamp: 23-May-2019 15:43:40
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

MATLAB displays the updated channel. In the Status Information section, the
MessagesTransmitted value increments by 1 each time you transmit a message. The message to be
received is available to all devices on the bus, so it shows up in the MessagesAvailable property
even for the transmitting channel.

Refer to the transmit function to understand more about its input arguments.

Receive a Message
Use the receive function to receive the available message on canch2.

1 To see messages available to be received on this channel, type:

canch2

canch2 =

 Channel with properties:

1 Getting Started

1-16

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 1
 MessagesAvailable: 1
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: 23-May-2019 15:43:40
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

The channel status information indicates 1 for MessagesAvailable.
2 Receive one message on canch2 and assign it to messagein.

messagein = receive(canch2,1)

messagein =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 500
 Extended: 0
 Name: ''

 Data Details
 Timestamp: 0.0312
 Data: [25 0 0 0 0 0 0 0]
 Signals: []
 Length: 8

 Protocol Flags
 Error: 0

 Transmit and Receive CAN Messages

1-17

 Remote: 0

 Other Information
 Database: []
 UserData: []

Note the received message Data property. This matches the data transmitted from canch1.

Refer to the receive function to understand more about its input arguments.
3 To check if the channel received the message, view the channel display.

canch2

canch2 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 1
 MessagesAvailable: 0
 MessagesReceived: 1
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: 23-May-2019 15:43:40
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 250000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

The channel status information indicates 1 for MessagesReceived, and 0 for
MessagesAvailable.

1 Getting Started

1-18

Unpack a Message
After your channel receives a message, specify how to unpack the message and interpret the data in
the message. Use unpack to specify the parameters for unpacking a message; these should
correspond to the parameters used for packing.

value = unpack(messagein,0,16,'LittleEndian','int16')

value =

 int16

 25

Refer to the unpack function to understand more about its input arguments.

Save and Load CAN Channels
You can save a CAN channel object to a file using the save function anytime during the CAN
communication session.

To save canch1 to the MATLAB file mycanch.mat, type:

save mycanch.mat canch1

If you have saved a CAN channel in a MATLAB file, you can load the channel into MATLAB using the
load function. For example, to reload the channel from mycanch.mat which was created earlier,
type:

load mycanch.mat

The loaded CAN channel object reconnects to the specified hardware and reconfigures itself to the
specifications when the channel was saved.

Disconnect Channels and Clean Up
• “Disconnect the Configured Channels” on page 1-19
• “Clean Up the MATLAB Workspace” on page 1-20

Disconnect the Configured Channels

When you no longer need to communicate with your CAN bus, use the stop function to disconnect
the CAN channels that you configured.

1 Stop the first channel.

stop(canch1)
2 Check the channel status.

canch1

.

.

 Transmit and Receive CAN Messages

1-19

.
 Status Information
 Running: 0
 MessagesAvailable: 1
 MessagesReceived: 0
 MessagesTransmitted: 1

3 Stop the second channel.

stop(canch2)
4 Check the channel status.

canch2

.

.

.
 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 1
 MessagesTransmitted: 0

Clean Up the MATLAB Workspace

When you no longer need these objects and variables, remove them from the MATLAB workspace
with the clear command.

1 Clear each channel.

clear canch1
clear canch2

2 Clear the CAN messages.

clear messageout
clear messagein

3 Clear the unpacked value.

clear value

See Also

Related Examples
• “Filter Messages” on page 1-21
• “Multiplex Signals” on page 1-22
• “Configure Silent Mode” on page 1-25

More About
• “MathWorks Virtual Channels” on page 1-6

1 Getting Started

1-20

Filter Messages
You can set up filters on your channel to accept messages based on the filtering parameters you
specify. Set up your filters before putting your channel online. For more information on message
filtering, see these functions:

• filterAllowAll
• filterBlockAll
• filterAllowOnly

To specify message names you want to filter, create a CAN channel and attach a database to the
channel.

canch1 = canChannel('Vector','CANcaseXL 1',1);
canch1.Database = canDatabase('demoVNT_CANdbFiles.dbc');

Set a filter on the channel to allow only the message EngineMsg, and display the channel
FilterHistory property.

filterAllowOnly(canch1,'EngineMsg');
canch1.FilterHistory

 Standard ID Filter: Allow Only | Extended ID Filter: Allow All

When you start the channel and receive messages, only those marked EngineMsg pass through the
filter.

See Also

Related Examples
• “Transmit and Receive CAN Messages” on page 1-10
• “Load .dbc Files and Create Messages” on page 4-2
• “View Message Information in a CAN Database” on page 4-5
• “Attach a CAN Database to Existing Messages” on page 4-8

 Filter Messages

1-21

Multiplex Signals
Use multiplexing to represent multiple signals in one signal’s location in a CAN message’s data. A
multiplexed message can have three types of signals:

• Standard signal — This signal is always active. You can create one or more standard signals.
• Multiplexor signal — Also called the mode signal, it is always active and its value determines

which multiplexed signal is currently active in the message data. You can create only one
multiplexor signal per message.

• Multiplexed signal — This signal is active when its multiplex value matches the value of the
multiplexor signal. You can create one or more multiplexed signals in a message.

Multiplexing works only with a CAN database with message definitions that already contain multiplex
signal information. This example shows you how to access the different multiplex signals using a
database constructed specifically for this purpose. This database has one message with these signals:

• SigA — A multiplexed signal with a multiplex value of 0.
• SigB — Another multiplexed signal with a multiplex value of 1.
• MuxSig — A multiplexor signal, whose value determines which of the two multiplexed signals are

active in the message.

For example,

1 Create a CAN database.

d = canDatabase('Mux.dbc')

Note This is an example database constructed for creating multiplex messages. To try this
example, use your own database.

2 Create a CAN message.

m = canMessage(d,'Msg')

m =

 can.Message handle
 Package: can

 Properties:
 ID: 250
 Extended: 0
 Name: 'Msg'
 Database: [1x1 can.Database]
 Error: 0
 Remote: 0
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]
 Signals: [1x1 struct]

 Methods, Events, Superclasses
3 To display the signals, type:

m.Signals

1 Getting Started

1-22

ans =

 SigB: 0
 SigA: 0
 MuxSig: 0

MuxSig is the multiplexor signal, whose value determines which of the two multiplexed signals
are active in the message. SigA and SigB are the multiplexed signals that are active in the
message if their multiplex values match MuxSig. In the example shown, SigA is active because
its current multiplex value of 0 matches the value of MuxSig (which is 0).

4 If you want to make SigB active, change the value of the MuxSig to 1.

m.Signals.MuxSig = 1

To display the signals, type:

m.Signals

ans =

 SigB: 0
 SigA: 0
 MuxSig: 1

SigB is now active because its multiplex value of 1 matches the current value of MuxSig (which
is 1).

5 Change the value of MuxSig to 2.

m.Signals.MuxSig = 2

Here, neither of the multiplexed signals are active because the current value of MuxSig does not
match the multiplex value of either SigA or SigB.

 m.Signals

 ans =

 SigB: 0
 SigA: 0
 MuxSig: 2

Always check the value of the multiplexor signal before using a multiplexed signal value.

if (m.Signals.MuxSig == 0)
% Feel free to use the value of SigA however is required.
end

This ensures that you are not using an invalid value, because the toolbox does not prevent or
protect reading or writing inactive multiplexed signals.

Note You can access both active and inactive multiplexed signals, regardless of the value of the
multiplexor signal.

Refer to the canMessage function to learn more about creating messages.

 Multiplex Signals

1-23

See Also

Related Examples
• “Transmit and Receive CAN Messages” on page 1-10

1 Getting Started

1-24

Configure Silent Mode
The SilentMode property of a CAN channel specifies that the channel can only receive messages
and not transmit them. Use this property to observe all message activity on the network and perform
analysis without affecting the network state or behavior.

1 Change the SilentMode property of the first CAN channel, canch1 to true.

canch.SilentMode = true
2 To see the changed property value, type:

canch1.SilentMode

ans =

 1

See Also
Functions
canChannel

Properties
can.Channel Properties

Related Examples
• “Transmit and Receive CAN Messages” on page 1-10

 Configure Silent Mode

1-25

Hardware Support Package Installation

2

Install Hardware Support Package for Device Driver
In this section...
“Install Support Packages” on page 2-2
“Update or Uninstall Support Packages” on page 2-2

To communicate with a CAN device, you must install the required driver on your system.

The drivers are available in the support packages for the following vendors:

• National Instruments (NI-XNET CAN)
• Kvaser
• Vector
• PEAK-System

Note For deployed applications, the target machine also needs the appropriate drivers installed. If
the target machine does not have MATLAB on it, you must install the vendor drivers manually.

Install Support Packages
To install the support package for the required driver:

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Hardware
Support Packages.

2 In the left pane of the Add-On Explorer, scroll to Filter by Type and check Hardware Support
Packages.

3 Under Filter by Hardware Type check CAN Devices. The Add-On Explorer displays all the
support packages for the supported vendors of CAN devices. Click the support package for your
device vendor.

4 Click Install > Install. Sign in to your MathWorks account if necessary, and proceed.

Update or Uninstall Support Packages
To uninstall support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Manage Add-Ons.

To update existing support packages:

On the MATLAB Home tab, in the Environment section, click Add-Ons > Check for Updates >
Hardware Support Packages.

See Also

More About
• “Get and Manage Add-Ons”

2 Hardware Support Package Installation

2-2

• “Vendor Limitations”

 Install Hardware Support Package for Device Driver

2-3

CAN Communication Workflows

• “CAN Transmit Workflow” on page 3-2
• “CAN Receive Workflow” on page 3-3

3

CAN Transmit Workflow
This workflow helps you create a CAN channel and transmit messages.

See Also
Functions
canChannel | configBusSpeed | start | canMessage | canDatabase | pack | transmit | stop |
canMessageImport | transmitConfiguration | transmitEvent | transmitPeriodic

Properties
can.Channel Properties | can.Message Properties

Blocks
CAN Pack | CAN Transmit | CAN Replay

3 CAN Communication Workflows

3-2

CAN Receive Workflow
Use this workflow to receive and unpack CAN messages.

See Also
Functions
receive | configBusSpeed | attachDatabase | canDatabase | stop | unpack | extractAll |
extractRecent | extractTime

Properties
can.Channel Properties | can.Message Properties

Blocks
CAN Receive | CAN Unpack | CAN Log

 CAN Receive Workflow

3-3

Using a CAN Database

• “Load .dbc Files and Create Messages” on page 4-2
• “View Message Information in a CAN Database” on page 4-5
• “View Signal Information in a CAN Message” on page 4-7
• “Attach a CAN Database to Existing Messages” on page 4-8

4

Load .dbc Files and Create Messages
In this section...
“Vector CAN Database Support” on page 4-2
“Load the CAN Database” on page 4-2
“Create a CAN Message” on page 4-2
“Access Signals in the Constructed CAN Message” on page 4-3
“Add a Database to a CAN Channel” on page 4-3
“Update Database Information” on page 4-3

Vector CAN Database Support
Vehicle Network Toolbox allows you to use a Vector CAN database. The database .dbc file contains
definitions of CAN messages and signals. Using the information defined in the database file, you can
look up message and signal information, and build messages. You can also represent message and
signal information in engineering units so that you do not need to manipulate raw data bytes.

Load the CAN Database
To use a CAN database file, load the database into your MATLAB session. At the MATLAB command
prompt, type:

db = canDatabase('filename.dbc')

Here db is a variable you chose for your database handle and filename.dbc is the actual file name
of your CAN database. If your CAN database is not in the current working directory, type the path to
the database:

db = canDatabase('path\filename.dbc')

Tip CAN database file names containing non-alphanumeric characters such as equal signs,
ampersands, and so forth are incompatible with Vehicle Network Toolbox. You can use periods in your
database name. Rename any CAN database files with non-alphanumeric characters before you use
them.

This command returns a database object that you can use to create and interpret CAN messages
using information stored in the database. Refer to the canDatabase function for more information.

Create a CAN Message
This example shows you how to create a message using a database constructed specifically for this
example. You can access this database in the Toolbox > VNT > VNTDemos subfolder in your
MATLAB installation folder. This database has a message, EngineMsg. To try this example, create
messages and signals using definitions in your own database.

1 Create the CAN database object.

cd ([matlabroot '\examples\vnt'])
d = canDatabase('demoVNT_CANdbFiles.dbc');

4 Using a CAN Database

4-2

2 Create a CAN message using the message name in the database.

message = canMessage(d,'EngineMsg');

Access Signals in the Constructed CAN Message
You can access the two signals defined for the message you created in the example database,
message. You can also change the values for some signals.

1 To display signals in your message, type:

sig = message.Signals

sig =

 struct with fields:

 VehicleSpeed: 0
 EngineRPM: 250

2 Change the value of the EngineRPM signal:

message.Signals.EngineRPM = 300;
3 Reassign the signals and display them again to see the change.

sig = message.Signals

sig =

 struct with fields:

 VehicleSpeed: 0
 EngineRPM: 300

Add a Database to a CAN Channel
To add a database to the CAN channel canch, type:

canch.Database = canDatabase('Mux.dbc')

Update Database Information
When you make changes to a database file:

1 Reload the database file into your MATLAB session using the canDatabase function.
2 Reattach the database to messages using the attachDatabase function.

See Also
Functions
canDatabase

Properties
can.Database Properties

 Load .dbc Files and Create Messages

4-3

Related Examples
• “Use DBC-Files in CAN Communication” on page 14-21

More About
• “View Message Information in a CAN Database” on page 4-5
• “View Signal Information in a CAN Message” on page 4-7
• “Attach a CAN Database to Existing Messages” on page 4-8

4 Using a CAN Database

4-4

View Message Information in a CAN Database
You can look up information on message definitions by a single message by name, or a single message
by ID. You can also look up information on all message definitions in the database by typing:

msgInfo = messageInfo(database name)

This returns the message structure of information about messages in the database. For example:

msgInfo = messageInfo(db)

msgInfo =

5x1 struct array with fields:
 Name
 Comment
 ID
 Extended
 Length
 Signals

To get information on a single message by message name, type:

msgInfo = messageInfo(database name,'message name')

This returns information about the message as defined in the database. For example:

msgInfo = messageInfo(db,'EngineMsg')

msgInfo =

 Name: 'EngineMsg'
 Comment: ''
 ID: 100
 Extended: 0
 Length: 8
 Signals: {2x1 cell}

Here the function returns information about message with name EngineMsg in the database db. You
can also use the message ID to get information about a message. For example, to view the example
message given here by inputting the message ID, type:

msgInfo = messageInfo(db,100,false)

This command provides the database name, the message ID, and a Boolean value for the extended
value of the ID.

See Also
Functions
messageInfo

More About
• “Load .dbc Files and Create Messages” on page 4-2

 View Message Information in a CAN Database

4-5

• “View Signal Information in a CAN Message” on page 4-7
• “Attach a CAN Database to Existing Messages” on page 4-8

4 Using a CAN Database

4-6

View Signal Information in a CAN Message
You can get signal definition information on a specific signal or all signals in a CAN message with
database definitions attached. Provide the message name or the ID as a parameter in the command:

sigInfo = signalInfo(db, 'EngineMsg')

You can also get information about a specific signal by providing the signal name:

sigInfo = signalInfo(db, 'EngineMsg', 'EngineRPM')

To learn how to use this property and work with the database, see the signalInfo function.

You can also access the Signals property of the message to view physical signal information. When
you create physical signals using database information, you can directly write to and read from these
signals to pack or unpack data from the message. When you write directly to the signal name, the
value is translated, scaled, and packed into the message data.

See Also
Functions
signalInfo

More About
• “Load .dbc Files and Create Messages” on page 4-2
• “View Message Information in a CAN Database” on page 4-5
• “Attach a CAN Database to Existing Messages” on page 4-8

 View Signal Information in a CAN Message

4-7

Attach a CAN Database to Existing Messages
You can attach a .dbc file to messages and apply the message definition defined in the database.
Attaching a database allows you to view the messages in their physical form and use a signal-based
interaction with the message data.

To attach a database to a message, type:

 attachDatabase(message name, database name)

Note If your message is an array, all messages in the array are associated with the database that you
attach.

You can also dissociate a message from a database so that you can view the message in its raw form.
To clear the attached database from a message, type:

 attachDatabase(message name, [])

Note The database gets attached even if the database does not find the specified message. Even
though the database is still attached to the message, the message is displayed in its raw mode.

See Also
Functions
attachDatabase

More About
• “Load .dbc Files and Create Messages” on page 4-2
• “View Message Information in a CAN Database” on page 4-5
• “View Signal Information in a CAN Message” on page 4-7

4 Using a CAN Database

4-8

XCP Communication Workflows

5

XCP Database and Communication Workflow
This workflow helps you:

• Manage an A2L database
• Connect to an XCP device
• Create an XCP channel
• Acquire and stimulate data
• Read and write to memory

5 XCP Communication Workflows

5-2

 XCP Database and Communication Workflow

5-3

See Also
Functions
xcpA2L | getEventInfo | getMeasurementInfo | xcpChannel | connect | disconnect |
isConnected | createMeasurementList | viewMeasurementLists | freeMeasurementLists |
startMeasurement | isMeasurementRunning | readDAQListData | writeSTIMListData |
stopMeasurement | readSingleValue | writeSingleValue

Properties
xcp.A2L Properties | xcp.Channel Properties

Blocks
XCP CAN Configuration | XCP CAN Transport Layer | XCP CAN Data Acquisition | XCP CAN Data
Stimulation | XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Data Stimulation

5 XCP Communication Workflows

5-4

Universal Measurement & Calibration
Protocol (XCP)

• “XCP Hardware Connection” on page 6-2
• “Read a Single Value” on page 6-6
• “Write a Single Value” on page 6-7
• “Read a Calibrated Measurement” on page 6-8
• “Acquire Measurement Data via Dynamic DAQ Lists” on page 6-9
• “Stimulate Measurement Data via Dynamic STIM Lists” on page 6-10

6

XCP Hardware Connection
You can connect your XCP client to a server module using the CAN protocol. This allows you to use
events and access measurements on the server module.

6 Universal Measurement & Calibration Protocol (XCP)

6-2

 XCP Hardware Connection

6-3

Create XCP Channel Using CAN Device
This example shows how to create an XCP CAN channel connection and access channel properties.
The example also shows how to unlock the server using seed key security.

Access an A2L file that describes the server module.

 a2lfile = xcpA2L('C:\work\XCPServerSineWaveGenerator.a2l')

a2lfile =

 A2L with properties:

 File Details
 FileName: 'XCPServerSineWaveGenerator.a2l'
 FilePath: 'C:\work\XCPServerSineWaveGenerator.a2l'
 ServerName: 'ModuleName'
 Warnings: [0×0 string]

 Parameter Details
 Events: {'100 ms'}
 EventInfo: [1×1 xcp.a2l.Event]
 Measurements: {1×6 cell}
 MeasurementInfo: [6×1 containers.Map]
 Characteristics: {'Gain' 'ydata'}
 CharacteristicInfo: [2×1 containers.Map]
 AxisInfo: [1×1 containers.Map]
 RecordLayouts: [4×1 containers.Map]
 CompuMethods: [3×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [0×1 containers.Map]

 XCP Protocol Details
 ProtocolLayerInfo: [1×1 xcp.a2l.ProtocolLayer]
 DAQInfo: [1×1 xcp.a2l.DAQ]
 TransportLayerCANInfo: [0×0 xcp.a2l.XCPonCAN]
 TransportLayerUDPInfo: [0×0 xcp.a2l.XCPonIP]
 TransportLayerTCPInfo: [1×1 xcp.a2l.XCPonIP]

Create an XCP channel using MathWorks virtual CAN channel 1.

xcpch = xcpChannel(a2lfile,'CAN','MathWorks','Virtual 1',1)

xcpch =

 Channel with properties:

 ServerName: 'ModuleName'
 A2LFileName: 'XCPServerSineWaveGenerator.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1×1 struct]
 SeedKeyDLL: []

Configure the Channel to Unlock the Server
This example shows how to configure the channel to unlock the server using a dll that contains a seed
and key security algorithm when your module is locked for Stimulation operations.

Create your XCP channel and set the channel SeedKeyDLL property.

 xcpch.SeedKeyDLL = ('C:\work\SeedNKeyXcp.dll')

xcpch =

 Channel with properties:

6 Universal Measurement & Calibration Protocol (XCP)

6-4

 ServerName: 'ModuleName'
 A2LFileName: 'XCPServerSineWaveGenerator.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1×1 struct]
 SeedKeyDLL: 'C:\work\SeedNKeyXcp.dll'

 XCP Hardware Connection

6-5

Read a Single Value
This example shows how to access a single value by name. The value is read directly from memory.

Create an XCP channel with access to an A2L file.

a2lfile = xcpA2L('C:\work\XCPSIM.a2l');
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the server.

connect(xcpch)

Read a single value of the Triangle measurement directly from memory.

readSingleValue(xcpch,'Triangle')

ans =

 50

6 Universal Measurement & Calibration Protocol (XCP)

6-6

Write a Single Value
This example shows how to write a single value by name. The value is written directly to memory.

Create an XCP channel linked to an A2L file.

a2lfile = xcpA2L('C:\work\XCPSIM.a2l');
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the server.

connect(xcpch)

Write a single value.

writeSingleValue(xcpch,'Triangle',50)

 Write a Single Value

6-7

Read a Calibrated Measurement
This example shows a typical workflow for reading a calibration file and using a translation table to
calibrate a measurement reading.

Read the engine management ECU calibration file.

a2lobj = xcpA2L('ems.a2l');

Connect to the ECU.

ch = xcpChannel(a2lobj,'UDP','192.168.1.55',5555);

Set the table that translates a pedal position to a torque demand.

writeCharacteric(ch,'tq_accel_request', ...
[0 2 4 9 14 24 48 72 96 144 192 204 216 228 240]);

Set the pedal position to 50%.

writeMeasurement(ch,'pedal_position',50);

Read the demand.

value = readMeasurement(ch,'tq_demand')

value =
 96

See Also
Functions
readCharacteristic | writeCharacteristic | readMeasurement | writeMeasurement |
readAxis | writeAxis

6 Universal Measurement & Calibration Protocol (XCP)

6-8

Acquire Measurement Data via Dynamic DAQ Lists
This example shows how to can create a dynamic data acquisition list and assign measurements to
the list. You can acquire data for measurements in this list from the server.

Create an XCP channel linked to an A2L file and connect it to the server.

a2lfile = xcpA2L('C:\work\XCPSIM.a2l');
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);
connect(xcpch)

Create a DAQ list for the '10 ms' event with 'PWMFiltered' and 'Triangle' measurements.
createMeasurementList(xcpch,'DAQ','10 ms',{'PWMFiltered','Triangle'});

Start measurement activity.

startMeasurement(xcpch)

Read 10 samples of data from the configured measurement list for the 'Triangle' measurement.

readDAQListData(xcpch,'Triangle', 10)

18 18 18 18 18 18 18 18 18 18

 Acquire Measurement Data via Dynamic DAQ Lists

6-9

Stimulate Measurement Data via Dynamic STIM Lists
This example shows how to can create a dynamic data stimulation list and assign measurements to
the list. You can stimulate data for specific measurements in this list.

Create an XCP channel linked to an A2L file and connect it.

a2lfile = xcpA2L('C:\work\XCPSIM.a2l');
xcpch = xcpChannel(a2lfile, 'CAN','Vector','Virtual 1',1);
connect(xcpch)

Note If your module is locked for STIM operations, configure the channel to unlock the server.

Create a STIM list for the '100ms' event with 'PWMFiltered'and 'Triangle' measurements.
createMeasurementList(xcpch,'STIM','100ms',{'PWMFiltered','Triangle'});

Start the measurement.

startMeasurement(xcpch)

Write 10 to the configured measurement list for the 'Triangle' measurement.

writeSTIMListData(xcpch,'Triangle',10);

6 Universal Measurement & Calibration Protocol (XCP)

6-10

J1939

• “J1939 Interface” on page 7-2
• “J1939 Parameter Group Format” on page 7-3
• “J1939 Network Management” on page 7-4
• “J1939 Transport Protocols” on page 7-5
• “J1939 Channel Workflow” on page 7-6

7

J1939 Interface
J1939 is a high-level protocol built on the CAN bus that provides serial data communication between
electronic control units (ECUs) in heavy-duty vehicles. Applications of J1939 include:

• Diesel power-train applications
• In-vehicle networks for buses and trucks
• Agriculture and forestry machinery
• Truck-trailer connections
• Military vehicles
• Fleet management systems
• Recreational vehicles
• Marine navigation systems

The J1939 protocol uses CAN as the physical layer, which defines the communication between ECUs
in the vehicle network. The protocol has a second data-link layer that defines rules of communication
and error detection. A third application layer defines the data transferred over the network.

See Also

More About
• “J1939 Parameter Group Format” on page 7-3
• “J1939 Network Management” on page 7-4
• “J1939 Transport Protocols” on page 7-5
• “J1939 Channel Workflow” on page 7-6

7 J1939

7-2

J1939 Parameter Group Format
The application layer deals with parameter groups (PGs) sent and received over the network. J1939
protocol uses broadcast messages, or messages sent over the CAN bus without a defined destination.
Devices on the same network can access these messages without permission or special requests. If a
device requires a specific message, include the device destination address in the message identifier.

The message contains a group of parameters that define related messages. For example, a message
sent to the engine controller can contain both engine speed and RPM. These parameters are
represented in the CAN identifier by a parameter group number (PGN). Parameter groups use 29-bit
identifiers with this message structure:

Parameter Priority Reserved Data Page PDU Format PDU
Specific

Source
Address

Size 3 bits 1 bit 1 bit 8 bits 8 bits 8 bits

• First three bits represent the priority of the message on the network. Zero is the highest priority.
• The next bit is reserved for future use. For transmit messages, set this to zero.
• The next bit is the data page, which extends the maximum number of possible PGs in the
identifier.

• The next 8 bits are the protocol data unit (PDU) format, which specifies whether the message is
targeted for a single device or is broadcast. If the PDU is less than 240, then the message is sent
to a specific device and if it over 240, it is sent to the entire network.

• The next 8 bits are the PDU specific, which contains the address of the device when the PDU
format is less than 240. If PDU format is greater than 240, PDU specific contains group extension,
or the number of extended broadcast messages in this parameter group.

• The last 8 bits contain the source address, which is the address of the device sending the
parameter groups.

The protocol application layer transmits the PG on the CAN network. PG length can be up to 1785
bytes and is not limited by the length of a CAN message. However, PGs larger than 8 bytes must be
transmitted using a transport protocol.

See Also

More About
• “J1939 Interface” on page 7-2
• “J1939 Network Management” on page 7-4
• “J1939 Transport Protocols” on page 7-5
• “J1939 Channel Workflow” on page 7-6

 J1939 Parameter Group Format

7-3

J1939 Network Management
Each device on a J1939 network has a unique address. The PDU Specific uses device addresses to
send parameter groups (PG) to a specific device. Static addresses between zero and 253 are assigned
for every device on the network. You can also assign 254, which is a null and 255, which is a global
address.

Address Claiming
The application sending a PG must claim an ECU address. The application sends an address claiming
PG first, and resumes sending other PGs if there is not address conflict. If the source application
encounters an address conflict, it can send a PG to the global (255) address to request all devices to
declare their addresses. It can then claim one of the unused addresses.

See Also

More About
• “J1939 Interface” on page 7-2
• “J1939 Parameter Group Format” on page 7-3
• “J1939 Transport Protocols” on page 7-5
• “J1939 Channel Workflow” on page 7-6

7 J1939

7-4

J1939 Transport Protocols
J1939 transport protocol breaks up PGs larger than 8 data bytes and up to 1785 bytes, into multiple
packets. The transport protocol defines the rules for packaging, transmitting, and reassembling the
data.

• Messages that have multiple packets are transmitted with a dedicated PGN, and have the same
message ID and similar functionality.

• The length of each message in the packet must be 8 bytes or fewer.
• The first byte in the data field of a message specifies the sequence of the message (one to 255)

and the next seven bytes contain the original data.
• All unused bytes in the data field are set to zero.
• A different PGN controls the message flow.

The data package is passed to the application layer after it is reassembled in the order specified by
the first data-field byte.

See Also

More About
• “J1939 Interface” on page 7-2
• “J1939 Parameter Group Format” on page 7-3
• “J1939 Network Management” on page 7-4
• “J1939 Transport Protocols” on page 7-5
• “J1939 Channel Workflow” on page 7-6

 J1939 Transport Protocols

7-5

J1939 Channel Workflow
Transmit and receive parameter groups (PGs) using j1939Channel via a CAN network.

7 J1939

7-6

 J1939 Channel Workflow

7-7

See Also

More About
• “J1939 Interface” on page 7-2
• “J1939 Parameter Group Format” on page 7-3
• “J1939 Network Management” on page 7-4
• “J1939 Transport Protocols” on page 7-5

7 J1939

7-8

CAN Communications in Simulink

• “Vehicle Network Toolbox Simulink Blocks” on page 8-2
• “CAN Communication Workflows in Simulink” on page 8-3
• “Open the Vehicle Network Toolbox Block Library” on page 8-6
• “Build CAN Communication Simulink Models” on page 8-7
• “Create Custom CAN Blocks” on page 8-15
• “Supported Block Features” on page 8-18
• “Timing in Hardware Interface Models” on page 8-21

8

Vehicle Network Toolbox Simulink Blocks
This section describes how to use the Vehicle Network Toolbox CAN Communication block library.
The library contains these blocks:

• CAN Configuration — Configure the settings of a CAN device.
• CAN Log — Logs messages to file.
• CAN Pack — Pack signals into a CAN message.
• CAN Receive — Receive CAN messages from a CAN bus.
• CAN Replay— Replays logged messages to CAN bus or output port.
• CAN Transmit — Transmit CAN messages to a CAN bus.
• CAN Unpack — Unpack signals from a CAN message.

The CAN FD Communication block library contains similar blocks for the CAN FD protocol.

The Vehicle Network Toolbox block library is a tool for simulating message traffic on a CAN network,
as well for using the CAN bus to send and receive messages. You can use blocks from the block
library with blocks from other Simulink libraries to create sophisticated models.

To use the Vehicle Network Toolbox block library, you require Simulink, a tool for simulating dynamic
systems. Simulink is a model definition environment. Use Simulink blocks to create a block diagram
that represents the computations of your system or application. Simulink is also a model simulation
environment. Run the block diagram to see how your system behaves. If you are new to Simulink, see
“Get Started with Simulink” (Simulink) to understand its functionality better.

For more detailed information about the blocks in the Vehicle Network Toolbox block library see
“Communication in Simulink”.

8 CAN Communications in Simulink

8-2

CAN Communication Workflows in Simulink
In this section...
“Message Transmission Workflow” on page 8-3
“Message Reception Workflow” on page 8-4

Message Transmission Workflow
This workflow represents the most common CAN Transmit model. Adjust your model as needed. For
more workflow examples, see “Build CAN Communication Simulink Models” on page 8-7 and the
“Simulink Tutorials” in the Vehicle Network Toolbox examples.

 CAN Communication Workflows in Simulink

8-3

Using Mux Blocks

• Use a Mux block to combine every message from the source if they are transmitted at the same
rate.

• Use one CAN Transmit block for each configured Mux block.

Message Reception Workflow

Message Filtering

Set up filters to process only relevant messages. This ensures optimal simulation performance.

Do not set up filters if you need to parse all bus communications.

Function-Call Triggered Message Processing

Set up your CAN Unpack block:

• In a function-call triggered subsystem if you want to unpack every message received by your CAN
Receive block.

8 CAN Communications in Simulink

8-4

• Without a function-call triggered subsystem if you want to unpack only the most recent message
received by your CAN Receive block.
Set up this system if your receive block is filtering for a single message.

Downstream Processing

For any downstream processing using received messages, include blocks:

• Within the function-call subsystem if your downstream process must respond to all messages
received in a single timestep in this model.

• Outside the function-call subsystem if your downstream process responds only to the most recent
message received in a given timestep in this model.
In this case, the CAN Unpack block will not respond to any other messages received, irrespective
of the messages ID.

 CAN Communication Workflows in Simulink

8-5

Open the Vehicle Network Toolbox Block Library
In this section...
“Using the Simulink Library Browser” on page 8-6
“Using the MATLAB Command Window” on page 8-6

Using the Simulink Library Browser
To open the Vehicle Network Toolbox block library, start Simulink by entering the following at the
MATLAB command prompt:

simulink

In the Simulink start page dialog, click Blank Model, and then Create Model. An empty, Editor
window opens.

In the model Editor toolstrip Simulation tab, click Library Browser.

The Simulink Library Browser opens. Its left pane contains a tree of available block libraries in
alphabetical order. Expand the Vehicle Network Toolbox node and click CAN Communication.

Using the MATLAB Command Window
To open the Vehicle Network Toolbox CAN Communications block library, enter canlib in the
MATLAB Command window.

MATLAB displays the contents of the library in a separate window.

8 CAN Communications in Simulink

8-6

Build CAN Communication Simulink Models

Build the Message Transmit Part of the Model
This section shows how to build the part of the model to transmit CAN messages, using Vehicle
Network Toolbox blocks with other blocks in the Simulink library.

Building a model to transmit CAN messages is detailed in the following steps:

• “Step 1: Create a New Model” on page 8-7
• “Step 2: Open the Block Library” on page 8-7
• “Step 3: Drag Vehicle Network Toolbox Blocks into the Model” on page 8-7
• “Step 4: Drag Other Blocks to Complete the Model” on page 8-8
• “Step 5: Connect the Blocks” on page 8-8
• “Step 6: Specify the Block Parameter Values” on page 8-8

For this portion of the example

• Use a MathWorks virtual CAN channel to transmit messages.
• Use the CAN Configuration block to configure your CAN channel.
• Use the Constant block to provide data to the CAN Pack block.
• Use the CAN Transmit block to send the data to the virtual CAN channel.

Use this section with “Build the Message Receive Part of the Model” on page 8-9 and “Save and
Run the Model” on page 8-13 to build your complete model and run the simulation.

Step 1: Create a New Model

1 To start Simulink and create a new model, enter the following at the MATLAB command prompt:

simulink

In the Simulink start page dialog, click Blank Model, and then Create Model. An empty Editor
window opens.

2 In the Editor toolstrip Simulation tab, click Save > Save As to assign a name to your new
model.

Step 2: Open the Block Library

1 In the model Editor toolstrip Simulation tab, click Library Browser.
2 The Simulink Library Browser opens. Its left pane contains a tree of available block libraries in

alphabetical order. Expand the Vehicle Network Toolbox node and click CAN
Communication.

Step 3: Drag Vehicle Network Toolbox Blocks into the Model

To place a block into your model, click a block in the library and drag it into the editor. For this
example, you need in your model one instance each of the following blocks:

• CAN Configuration

 Build CAN Communication Simulink Models

8-7

• CAN Pack
• CAN Transmit

Note The default configuration of each block in your model uses MathWorks Virtual 1 Channel 1. You
can configure the blocks in your model to use virtual channels or hardware devices from other
vendors.

Note By default, block names are not shown in the model. To display the block names while working
in the model Editor, in the toolstrip Format tab click Auto and clear the Hide Automatic Block
Names selection.

Step 4: Drag Other Blocks to Complete the Model

This example uses a Constant block as a source of data. From the Simulink > Commonly Used Blocks
library, add a Constant block to your model.

Step 5: Connect the Blocks

Make a connection between the Constant block and the CAN Pack block input. When you move the
pointer near the output port of the Constant block, the pointer becomes a crosshair. Click the
Constant block output port and, holding the mouse button, drag the pointer to the input port of the
CAN Pack block. Then release the button.

In the same way, make a connection between the output port of the CAN Pack block and the input
port of the CAN Transmit block.

The CAN Configuration block does not connect to any other block. This block configures its CAN
channel for communication.

Step 6: Specify the Block Parameter Values

You set parameters for each block in your model by double-clicking the block.

Configure the CAN Configuration Block

Double-click the CAN Configuration block to open its parameters dialog box. Verify or set the
following parameters:

• Device to MathWorks Virtual 1 (Channel 1).
• Bus speed to 500000.
• Acknowledge Mode to Normal.
• Click OK.

Configure the CAN Pack Block

Double-click the CAN Pack block to open its parameters dialog box. Verify or set the following
parameters:

• Data is input as to raw data.
• Name to the default value CAN Msg.

8 CAN Communications in Simulink

8-8

• Identifier type to the default Standard (11-bit identifier) type.
• Identifier to 500.
• Length (bytes) to the default length of 8.
• Click OK.

Configure the CAN Transmit Block

Double-click the CAN Transmit block to open its parameters dialog box. Verify or set the following
parameters:

• Device to MathWorks Virtual 1 (Channel 1).

Click OK.

Configure the Constant Block

Double-click the Constant block to open its parameters dialog box.

On the Main tab, set:

• Constant value to [1 2 3 4 5 6 7 8].
• Sample time to 0.01 seconds.

On the Signal Attributes tab, set:

• Output data type to uint8.

Click OK.

Your model looks like this figure.

Build the Message Receive Part of the Model
This section shows how to build the part of the model to receive CAN messages, using the Vehicle
Network Toolbox blocks with other blocks in the Simulink library. This example illustrates how to
receive data via a CAN network, in the following steps:

• “Step 7: Drag Vehicle Network Toolbox Blocks into the Model” on page 8-10

 Build CAN Communication Simulink Models

8-9

• “Step 8: Drag Other Blocks to Complete the Model” on page 8-10
• “Step 9: Connect the Blocks” on page 8-11
• “Step 10: Specify the Block Parameter Values” on page 8-12

For this portion of the example

• Use a MathWorks virtual CAN channel to receive messages.
• Use a CAN Configuration block to configure your virtual CAN channel.
• Use a CAN Receive block to receive the message.
• Use a Function-Call Subsystem block that contains the CAN Unpack block. This function takes the

data from the CAN Receive block and uses the parameters of the CAN Unpack block to unpack
your message data.

• Use a Scope block to display the received data.

Step 7: Drag Vehicle Network Toolbox Blocks into the Model

For this part of the example, start with one instance each of the following blocks from the Vehicle
Network Toolbox CAN Communication block library:

• CAN Configuration
• CAN Receive

Tip Configure separate CAN channels for the CAN Receive and CAN Transmit blocks. Each channel
needs its own CAN Configuration block.

Step 8: Drag Other Blocks to Complete the Model

Use the Function-Call Subsystem block from the Simulink Ports & Subsystems block library to build
your CAN Message pack subsystem.

1 Drag the Function-Call Subsystem block into the model.
2 Double-click the Function-Call Subsystem block to open the subsystem editor.
3 Double-click the In1 port label to rename it to CAN Msg.
4 Double-click the Out1 port label to rename it to Data.
5 Drag and drop the CAN Unpack block from the Vehicle Network Toolbox block library into this

subsystem. If placed between the input and output lines, they will automatically connect.

The inside of your Function-Call Subsystem block should now look like this figure.

8 CAN Communications in Simulink

8-10

The reason to place the CAN Unpack inside a Function-Call Subsystem is so that it can capture
all possible messages.

6 Click the back-arrow in the toolstrip to return to your model view.

Step 9: Connect the Blocks

1 Rename the Function-Call Subsystem block to CAN Unpack Subsystem.
2 Connect the CAN Msg output port of the CAN Receive block to the In1 input port of the CAN

Unpack Subsystem block.
3 Connect the f() output port of the CAN Receive block to the function() input port of the CAN

Unpack Subsystem block.
4 For a visual display of the simulation results, drag the Scope block from the Simulink block

library into your model.
5 Connect the CAN Msg output port of your CAN Unpack Subsystem block to the input port of

the Scope block.

The CAN Configuration block does not connect to any other block. This block configures the CAN
channel used by the CAN Receive block to receive the CAN message.

Your model looks like this figure.

 Build CAN Communication Simulink Models

8-11

Step 10: Specify the Block Parameter Values

Set parameters for the blocks in your model by double-clicking the block.

Configure the CAN Configuration1 Block

Double-click the CAN Configuration block to open its parameters dialog box. Set the:

• Device to MathWorks Virtual 1 (Channel 2).
• Bus speed to 500000.
• Acknowledge Mode to Normal.

Click OK.

Configure the CAN Receive Block

Double-click the CAN Receive block to open its Parameters dialog box. Set the:

• Device to MathWorks Virtual 1 (Channel 2).

8 CAN Communications in Simulink

8-12

• Sample time to 0.01.
• Number of messages received at each timestep to all.

Click OK.

Configure the CAN Unpack Subsystem

Double-click the CAN Unpack subsystem to open the Function-Call Subsystem editor. In the model,
double-click the CAN Unpack block to open its parameters dialog box. Set the:

• Data to be output as to raw data.
• Name to the default value CAN Msg.
• Identifier type to the default Standard (11-bit identifier).
• Identifier to 500.
• Length (bytes) to the default length of 8.

Click OK.

Save and Run the Model
This section shows you how to save the model you built, “Build the Message Transmit Part of the
Model” on page 8-7 and “Build the Message Receive Part of the Model” on page 8-9.

• “Step 11: Save the Model” on page 8-13
• “Step 12: Change Configuration Parameters” on page 8-13
• “Step 13: Run the Simulation” on page 8-13
• “Step 14: View the Results” on page 8-14

Step 11: Save the Model

Before you run the simulation, save your model by clicking the Save icon or selecting Save from the
Editor toolstrip Simulation tab.

Step 12: Change Configuration Parameters

1 In your model Editor toolstrip Modeling tab, click Model Settings. The Configuration
Parameters dialog box opens.

2 In the Solver Options section, select:

• Fixed-step from the Type list.
• Discrete (no continuous states) from the Solver list.

Step 13: Run the Simulation

To run the simulation, click the Run button in the Simulation or Modeling tab of the Editor
toolstrip.

When you run the simulation, the CAN Transmit block gets the message from the CAN Pack block. It
then transmits it via Virtual Channel 1. The CAN Receive block on Virtual Channel 2 receives this
message and hands it to the CAN Unpack Subsystem block to unpack the message.

 Build CAN Communication Simulink Models

8-13

While the simulation is running, the status bar at the bottom of the model window updates the
progress of the simulation.

Step 14: View the Results

Double-click the Scope block to view the message transfer on a graph. If you cannot see all the data
on the graph, click the Autoscale toolbar button, which automatically scales the axes to display all
stored simulation data.

In the graph, the horizontal axis represents the simulation time in seconds and the vertical axis
represents the received data value. You configured the model to pack and transmit an array of
constant values, [1 2 3 4 5 6 7 8], every 0.01 seconds of simulation time. These values are
received and unpacked. The output in the Scope window represents the received data values.

See Also

More About
• “Build and Edit a Model Interactively” (Simulink)

8 CAN Communications in Simulink

8-14

Create Custom CAN Blocks
In this section...
“Blocks Using Simulink Buses” on page 8-15
“Blocks Using CAN Message Data Types” on page 8-16

You can create custom Receive and Transmit blocks to use with hardware currently not supported
by Vehicle Network Toolbox. Choose one of the following work flows.

• “Blocks Using Simulink Buses” on page 8-15 (recommended) — Use Simulink bus signals to
connect blocks. Create functions and blocks with S-Function Builder and S-Function blocks.

• “Blocks Using CAN Message Data Types” on page 8-16 — Use CAN message data types to share
information. Write and compile your own C++ code to define functions, and MATLAB code to
create blocks.

Blocks Using Simulink Buses
To create custom blocks for Vehicle Network Toolbox that use Simulink CAN buses, you can use the
S-function builder. For full instructions on building S-functions and blocks this way, see “Use a Bus
Signal with S-Function Builder to Create an S-Function” (Simulink). The following example uses the
steps outlined in that topic.

This example shows you how to build two custom blocks for transmitting and receiving CAN
messages. These blocks use a Simulink message bus to interact with CAN Pack and CAN Unpack
blocks.

1 Create a Simulink message bus in the MATLAB workspace for CAN or CAN FD.

canMessageBusType

or

canFDMessageBusType

Each of these functions creates a variable in the workspace named CAN_MESSAGE_BUS or
CAN_FD_MESSAGE_BUS, respectively. You use this variable later for building your S-functions.

2 Open a new blank model in Simulink, and add to your model an S-Function Builder block from
the block library.

3 Double-click the S-Function Builder block to open its dialog box. The first function you build is
for transmitting.

4 Among the settings in the dialog box, define a function name and specify usage of a Simulink bus.

• S-function name: CustomCANTransmit
• Data Properties: Input Ports: Bus: On, Bus Name: CAN_MESSAGE_BUS, as shown in the

following figure.

 Create Custom CAN Blocks

8-15

For CAN FD, set the bus name to CAN_FD_MESSAGE_BUS.

In your function and block building, use the other tabs in the dialog box to define the code for
interaction with your device driver, and remove unnecessary ports.

5 Click Build. The code files are placed in the current working folder of MATLAB.
6 Place a new S-Function Builder block in your model, and repeat the steps to build an S-function

named CustomCANReceive. Use the same settings, except for input and output ports. The
receive block output port uses the same bus name as the transmit function input.

7 Build the receive function, and remove both S-Function Builder blocks from your model. At this
point, you can use the files generated by the S-Function Builder as a set of templates, which you
can further edit and compile with your own tools. Alternatively, you can use S-Function blocks to
run your functions.

8 Add two S-Function blocks to your model. Open each block, and set its Model Parameters S-
function name field, so you have one each of CustomCANTransmit and CustomCANReceive.

At this point you could create a mask for each block to allow access to parameters for your
hardware. This example does not need masks for these blocks.

9 Add other necessary blocks to your model, including:

• CAN Pack or CAN FD Pack
• CAN Unpack or CAN FD Unpack

10 Set the block parameters and connections.

A typical model might look like this. Here a Constant block and a Display block allow verification
of connections and model behavior.

Blocks Using CAN Message Data Types

Note For ease of design and to take advantage or more Simulink features, it is recommended that
you use Simulink buses instead of CAN message data types when possible. See “Blocks Using
Simulink Buses” on page 8-15.

To create your own blocks for use with other Vehicle Network Toolbox blocks, can use a custom CAN
data type. Register this custom CAN data type in a C++ S-function.

Note You must use a C++ file type S-function (.cpp) to create custom blocks that use CAN message
data types. Using a C-file type S-function (.c) might cause linker errors.

8 CAN Communications in Simulink

8-16

To register and use the custom CAN data type, in your S-function:

1 Define the IMPORT_SCANUTIL identifier that imports the required symbols when you compile the
S-function:

#define IMPORT_SCANUTIL
2 Include the can_datatype.h header located in matlabroot\toolbox\vnt\vntblks

\include\candatatype at the top of the S-function:

#include "can_datatype.h"

Note The header can_message.h included by can_datatype.h is located in matlabroot
\toolbox\shared\can\src\scanutil\. See the can_message.h file for information on the
CAN_MESSAGE and CAN_DATATYPE structures.

3 Link your S-function during build to the scanutil.lib located in the matlabroot\toolbox
\vnt\vntblks\lib\ARCH folder. The shared library scanutil.dll is located in the
matlabroot\bin\ARCH

4 Call this function in mdlInitializeSizes to initialize the custom CAN data type:

mdlInitialize_CAN_datatype(S);
5 Get custom data type ID using ssGetDataTypeId:

dataTypeID = ssGetDataTypeId(S,SL_CAN_MESSAGE_DTYPE_NAME);
6 Do one of the following:

• To create a receive block, set output port data type to CAN_MESSAGE:

ssSetOutputPortDataType(S,portID,dataTypeID);
• To create a transmit block, set the input port type to CAN_MESSAGE:

ssSetInputPortDataType(S,portID,dataTypeID);

See Also
Functions
canMessageBusType | canFDMessageBusType

More About
• “C/C++ S-Function Basics” (Simulink)
• “Use a Bus Signal with S-Function Builder to Create an S-Function” (Simulink)

 Create Custom CAN Blocks

8-17

Supported Block Features
The blocks of the Vehicle Network Toolbox block library support the following features.

CAN Communication
Block Platforms Simulink

Accelerator™
and Rapid
Accelerator

Code
Generation

Additional
Supporting
Products

Simulink Bus
Objects

CAN
Configuration

Windows, Linux Yes For host
computer only

 Not applicable

CAN Receive Windows, Linux Yes For host
computer only

 Recommended

CAN Transmit Windows, Linux Yes For host
computer only

 Recommended

CAN Pack Windows, Linux Yes Portable for
signal
information up
to 32-bit length

Simulink Real-
Time™,
Embedded
Coder®

Recommended

CAN Unpack Windows, Linux Yes Portable for
signal
information up
to 32-bit length

Simulink Real-
Time,
Embedded
Coder

Recommended

CAN Replay Windows, Linux Yes For host
computer only

 Recommended

CAN Log Windows, Linux Yes For host
computer only

 Recommended

CAN FD Communication
Block Platforms Simulink

Accelerator
and Rapid
Accelerator

Code
Generation

Additional
Supporting
Products

Simulink Bus
Object

CAN FD
Configuration

Windows, Linux Yes For host
computer only

 Not applicable

CAN FD
Receive

Windows, Linux Yes For host
computer only

 Required

CAN FD
Transmit

Windows, Linux Yes For host
computer only

 Required

CAN FD Pack Windows, Linux Yes Portable for
signal
information up
to 32-bit length

Simulink Real-
Time

Required

8 CAN Communications in Simulink

8-18

Block Platforms Simulink
Accelerator
and Rapid
Accelerator

Code
Generation

Additional
Supporting
Products

Simulink Bus
Object

CAN FD
Unpack

Windows, Linux Yes Portable for
signal
information up
to 32-bit length

Simulink Real-
Time

Required

CAN FD Replay Windows, Linux Yes For host
computer only

 Required

CAN FD Log Windows, Linux Yes For host
computer only

 Required

XCP Communication
Block Platforms Simulink

Accelerator
and Rapid
Accelerator

Code
Generation

Additional
Supporting
Products

Simulink Bus
Object

XCP CAN
Configuration

Windows Yes For host
computer only

Simulink Real-
Time

Not applicable

XCP CAN
Transport Layer

Windows Yes For host
computer only

 Not applicable

XCP CAN Data
Acquisition

Windows Yes For host
computer only

Simulink Real-
Time

Not applicable

XCP CAN Data
Stimulation

Windows Yes For host
computer only

Simulink Real-
Time

Not applicable

XCP UDP
Configuration

Windows Yes For host
computer only

Simulink Real-
Time

Not applicable

XCP UDP Data
Acquisition

Windows Yes For host
computer only

Simulink Real-
Time

Not applicable

XCP UDP Data
Stimulation

Windows Yes For host
computer only

Simulink Real-
Time

Not applicable

XCP UDP
Bypass

Windows Yes For host
computer only

Simulink Real-
Time

Not applicable

J1939 Communication
Block Platforms Simulink

Accelerator
and Rapid
Accelerator

Code
Generation

Additional
Supporting
Products

Simulink Bus
Object

J1939 Network
Configuration

Windows Yes For Windows
host computer
only

Simulink Real-
Time

Not applicable

 Supported Block Features

8-19

Block Platforms Simulink
Accelerator
and Rapid
Accelerator

Code
Generation

Additional
Supporting
Products

Simulink Bus
Object

J1939 Node
Configuration

Windows Yes For Windows
host computer
only

Simulink Real-
Time

Not applicable

J1939 CAN
Transport Layer

Windows Yes For Windows
host computer
only

Simulink Real-
Time

Not applicable

J1939 Transmit Windows Yes For Windows
host computer
only

Simulink Real-
Time

Not applicable

J1939 Receive Windows Yes For Windows
host computer
only

Simulink Real-
Time

Not applicable

See Also

More About
• “Platform Support” on page 9-6
• “Communication Protocols” (Simulink Real-Time)
• “Blocks for Embedded Targets” (Embedded Coder)

8 CAN Communications in Simulink

8-20

Timing in Hardware Interface Models

Simulation Time
When blocks in your Simulink model must interface with hardware devices, you might have to
consider how long the simulation takes to run in real time versus simulation time, and how often and
how many times the hardware interface blocks execute during a simulation. Usually your hardware
communication rates are relative to real-world or "wall clock" time. You can adjust the duration of a
simulation, the execution rate of the blocks, and the pacing of the model to accommodate your
hardware requirements. This topic discusses basic timing concepts in hardware interface models,
using fixed steps for block execution.

A model simulation has a duration defined by a start time and a stop time. The default duration is 10
units of simulation time (or simulated seconds). These simulation seconds are not necessarily
equivalent to a real-time second as measured by a wall clock.

To adjust the model duration, open the model Configuration Parameters by clicking the Model
Settings icon in the Modeling tab of the model editor toolstrip. Select Solver in the left pane. The
Start time and Stop time settings define the duration. In most cases, Start time should be 0.0, and
you can set Stop time to reflect the duration you want the model to have.

As a simulation runs, the clocking for block execution is performed by a series of timesteps. With a
setting for an automatic solver with fixed timestep sizes, during compilation Simulink calculates the
timestep frequency to accommodate the Sample time parameter settings of all the blocks in the
model. For example, if all the timed blocks in the model have a Sample time setting of 0.01 or a
multiple of that, then a timestep size of 0.01 works for the whole model.

Block Sample Time
For models that interface with hardware devices, you might prefer fixed timesteps of a specified rate.
For example, you might need millisecond resolution to control the timing relationship of your blocks.
Set the timing options as follows:

• Start time: 0.0
• Stop time: 10.0
• Type: Fixed-step
• Solver: discrete
• Fixed-step size: 0.001

The dialog settings look like this figure:

 Timing in Hardware Interface Models

8-21

In this model, a block with a default Sample time setting of 0.01 executes every tenth timestep, or
1001 times in a 10 second simulation. Another block that must run at twice the rate should have
Sample time set to 0.005.

Note In most cases, you can leave the Fixed-step size setting to auto, allowing Simulink to
calculate the appropriate fundamental sample time based on all the block settings.

Because the simulation duration is 10 simulated seconds, and the Sample time period of the block is
0.01 simulated seconds, that block executes 1001 times in a complete simulation (including first and
last step). The simulation runs as fast as its blocks can perform, and those 1001 executions might
take significantly less than 10 seconds of wall clock time. So the simulation in real time is determined
by how fast it can execute the blocks in the model for the required number of iterations. Often the
purpose of simulation is to model behavior in a way that takes less time than it would in a real-world
situation. In these cases, the sequence and repetition of block execution is important, while the actual
span of real-world time might not be.

Pacing Model Simulation
You might have a requirement for a model to interact with a hardware device by repeating some
operation at fixed intervals of real-world time. For example, a block might repeatedly read data from
a thermometer or send triggers for an external signal generator to output a pulse train.

If you set the block Sample time to 0.1, that would control the rate of block execution only in
simulation time. To correlate simulation time to real time, you can use Simulation Pacing to slow
down a simulation to run at the pace of real-world time. Access the Simulation Pacing Options dialog
by clicking Run > Simulation Pacing in the Simulation tab of the model editor toolstrip

Check Enable pacing to slow down simulation, and set the slider ratio to 1 (the default). This
causes simulation time to track as closely as possible with wall clock time, so 1 simulation second is
approximately equal to 1 wall clock second.

8 CAN Communications in Simulink

8-22

With this pacing setting, a block Sample time of 0.1 is approximately equal to 0.1 wall clock
seconds, resulting in ten block executions per second. So a block that generates a device output pulse
every 0.1 simulation seconds, now puts out 10 pulses per wall clock second.

See Also

More About
• “What Is Sample Time?” (Simulink)
• “Simulation Pacing” (Simulink)

 Timing in Hardware Interface Models

8-23

Hardware Limitations

This topic describes limitations of using hardware in the Vehicle Network Toolbox based on
limitations placed by the hardware vendor:

• “Vector Hardware Limitations” on page 9-2
• “Kvaser Hardware Limitations” on page 9-3
• “National Instruments Hardware Limitations” on page 9-4
• “File Format Limitations” on page 9-5
• “Platform Support” on page 9-6
• “Troubleshooting MDF Applications” on page 9-7

9

Vector Hardware Limitations
You cannot have more than 64 physical or 32 virtual simultaneous connections using a Vector CAN
device.

If you use more than the number of connections Vector allows, you might get an error:

• In MATLAB R2013a and later:
Unable to query hardware information for the selected CAN channel object.

• In MATLAB R2012b:

boost thread resource allocation error.
• In MATLAB R2012a and earlier:

An unhandled error occurred with CAN device.

To work around this issue in Simulink:

• Use only a single Receive block for message reception in Simulink and connect all
downstream Unpack blocks to it.

• Use a Mux block to combine CAN messages from Unpack blocks transmitting at the same rate
into a single Transmit block.

To work around this issue in MATLAB:

• Try reusing channels you have already created for your application in MATLAB.

9 Hardware Limitations

9-2

Kvaser Hardware Limitations
You must connect your Kvaser device before starting MATLAB.

The normal workflow with a Kvaser device is to connect the device before starting MATLAB. If
you connect a Kvaser device while MATLAB is already running, you might see the following
message.

Vehicle Network Toolbox has detected a supported Kvaser device.

To enable the device, shut down MATLAB. Then with the device connected, restart MATLAB.

 Kvaser Hardware Limitations

9-3

National Instruments Hardware Limitations
Limited number of connections to an NI-XNET channel

When using NI-XNET for CAN or CAN FD communication, there is a limit to the total number of
connections to the channel from MATLAB or Simulink.

To work around this issue in Simulink:

• Use only a single Receive block for message reception in Simulink and connect all
downstream Unpack blocks to it.

• Use a Mux block to combine CAN messages from Unpack blocks transmitting at the same rate
into a single Transmit block.

To work around this issue in MATLAB:

• Try reusing channels you have already created for your application.

9 Hardware Limitations

9-4

File Format Limitations

MDF-File
The following restrictions apply to MDF-file operations.

• The mdfSort function is not supported on Linux systems.
• mdfVisualize supports only integer and floating point data types in MDF-file channels.
• The following MDF-file functions do not support the full range of international characters that are

supported by the other MDF functions:

• mdfSort
• mdfVisualize

CDFX-File
When using CDFX-files, the following limitations apply:

• SW-AXIS-CONT elements with the category COM_AXIS, CURVE_AXIS, or RES_AXIS must use the
SW-INSTANCE-REF element, and the axis must be defined in a separate instance.

• Instances with the category VAL_BLK, MAP, CUBOID, CUBE_4, or CUBE_5 that represent
multidimensional arrays must use the VG element to group the physical values.

• DTD-based headers are not supported. The file header must be of the form:
<?xml version="1.0" encoding="utf-8"?>
<MSRSW xmlns="http://www.asam.net/schema/CDF/r2.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.asam.net/schema/CDF/r2.1 cdf_v2.1.0.sl.xsd">

BLF-File
Although Vector BLF-files support many networks, Vehicle Network Toolbox support of BLF-files is
limited to only CAN and CAN FD on Windows and Linux operating systems.

See Also
Functions
blfread | blfwrite | cdfx | mdf | mdfDatastore

More About
• “Platform Support” on page 9-6
• “Troubleshooting MDF Applications” on page 9-7

 File Format Limitations

9-5

Platform Support
The following tables indicate which toolbox features are available for each operating system platform.

Vendor Windows Linux
MathWorks virtual channels
Vector
PEAK-System
Kvaser
National Instruments

File Format Windows Linux
BLF
CDF
MDF

See Also

More About
• “Vendor Limitations”
• “File Format Limitations” on page 9-5
• “Supported Block Features” on page 8-18

9 Hardware Limitations

9-6

Troubleshooting MDF Applications

Error When Creating mdf Object
Issue

You might see an error when you try to create an object for access to the MDF-file with the mdf
function.

Possible Solutions

• A likely cause is an MDF-file that is improperly formatted or that includes unsupported elements.
For checking an MDF-file, Vector provides an MDF Validator tool, which you can download from
Tool Support MDF.

Error When Reading an MDF-File
Issue

You might see an error when you try to read data from an MDF-file with the read function.

Possible Solutions

• A possible cause is an MDF-file that is improperly formatted or that includes unsupported
elements. For checking an MDF-file, Vector provides an MDF Validator tool, which you can
download from Tool Support MDF.

• Another possible cause is an unsorted MDF-file. Beginning in R2019b, accessing an unsorted
MDF-file generates a recognizable error, and you can sort the file using the mdfSort function.

• When unable to read the entire file, you can read data one channel at a time. Use the read
function with the form data = read(mdfObj,chanGroupIndex,chanName)

Error When Reading an MDFDatastore
Issue

You might see an error when you try to read data from an MDFDatastore with the read function.

Possible Solutions

• Those channels targeted for reading must have the same name and belong to the same channel
group in each file of the MDF datastore. Assure uniformity across the MDF-files in the database
for the channels you are reading.

Unable to Find Specific Channel
Issue

You might be unable to find and read a channel of interest in the MDF-file.

 Troubleshooting MDF Applications

9-7

https://www.vector.com/us/en-us/products/application-areas/ecu-calibration/measurement/mdf/#c6793
https://www.vector.com/us/en-us/products/application-areas/ecu-calibration/measurement/mdf/#c6793

Possible Solutions

• To identify channels in the MDF-file, use the channelList function.

Unable to Save MDF Attachments
Issue

The saveAttachment function fails to save a file attached to the MDF-file.

Possible Solutions

• The saveAttachment function works only with embedded attachments; external files are not
saved because they are already on disk.

• If the attachment does not exist, check with the provider of the MDF-file.

Unable to Read Array Channel Structures
Issue

Vehicle Network Toolbox does not support array channel structures.

Possible Solutions

• To read these channels, you must write a composition function to repackage the data.

Unable to Read MIME and CANopen Data
Issue

Reading MDF-file channels with MIME or CANopen data generates an error.

Possible Solutions

• MIME and CANopen data are not supported by Vehicle Network Toolbox.

Table Column Names Do Not Match Channel Names
Issue

When reading an MDF-file, the column names of the output timetable correspond to the channel
names in the file, but they might not be identical. Table column names must be compliant with
MATLAB variable names, so they are altered to limit their size and characters. Most unsupported
characters are converted to underscores.

Possible Solutions

• The returned timetable preserves the ordering of the channels. So you can access data in the table
with numerical indexing.

• The original names of the channels are embedded in the timetable properties. For example:

m = mdf('File01.mf4');
tt = read(m);

9 Hardware Limitations

9-8

t1 = tt{1};
t1.Properties.VariableDescriptions

ans =

 1×2 cell array

 {'Signed_Int16_LE_Offset_32'} {'Unsigned_UInt32_LE_Primary_Offset_0'}

See Also
Functions
mdf | mdfSort | channelList

More About
• “Standard File Formats”
• “File Format Limitations” on page 9-5

External Websites
• Tool Support MDF

 Troubleshooting MDF Applications

9-9

https://www.vector.com/us/en-us/products/application-areas/ecu-calibration/measurement/mdf/#c6793

XCP Communications in Simulink

• “Vehicle Network Toolbox XCP Simulink Blocks” on page 10-2
• “Open the Vehicle Network Toolbox XCP Block Libraries” on page 10-3

10

Vehicle Network Toolbox XCP Simulink Blocks
Vehicle Network Toolbox provides two sets of XCP block libraries, which provide blocks for handling
XCP message traffic on a CAN network or by UDP. The CAN and UDP libraries contain the following
blocks:

CAN:

• XCP CAN Transport Layer— Transmit and Receive XCP messages over CAN bus.
• XCP CAN Configuration — Configure XCP settings for CAN.
• XCP CAN Data Acquisition — Acquire XCP data over CAN.
• XCP CAN Data Stimulation — Stimulate XCP data over CAN.

UDP:

• XCP UPD Configuration — Configure XCP settings for UDP.
• XCP UDP Data Acquisition — Acquire XCP data over UDP.
• XCP UDP Data Stimulation — Stimulate XCP data over UDP.

You can use these blocks with blocks from other Simulink libraries to create sophisticated models.

To use the Vehicle Network Toolbox XCP block libraries, you require Simulink, a tool for simulating
dynamic systems. Simulink is a model definition environment. Use Simulink blocks to create a block
diagram that represents the computations of your system or application. Simulink is also a model
simulation environment. Run the block diagram to see how your system behaves. If you are new to
Simulink, read “Get Started with Simulink” (Simulink) to understand its functionality better.

See Also
Blocks
XCP CAN Configuration | XCP CAN Transport Layer | XCP CAN Data Acquisition | XCP CAN Data
Stimulation | XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Data Stimulation

More About
• “Open the Vehicle Network Toolbox XCP Block Libraries” on page 10-3

10 XCP Communications in Simulink

10-2

Open the Vehicle Network Toolbox XCP Block Libraries

Using the MATLAB Command Window
To open the Vehicle Network Toolbox XCP block libraries, enter vntxcplib in the MATLAB
Command window.

The Simulink Library Browser opens in a separate window and displays two libraries for XCP blocks.
Double-click either CAN or UDP for the protocol you want.

Using the Simulink Library Browser
To open the Vehicle Network Toolbox XCP block libraries using Simulink windows and menus, use the
following steps.

1 Click Simulink in the MATLAB toolstrip Home tab.
2 In the Simulink Start Page hover over Blank Model and click Create Model, or open one of

your existing models.
3 In the model Editor toolstrip Simulation tab, click Library Browser.
4 The left pane of the browser lists all available block libraries. Expand the Vehicle Network

Toolbox and XCP Communication trees, then select either CAN or UDP for the protocol you
want.

See Also
Blocks
XCP CAN Configuration | XCP CAN Transport Layer | XCP CAN Data Acquisition | XCP CAN Data
Stimulation | XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Data Stimulation

More About
• “Vehicle Network Toolbox XCP Simulink Blocks” on page 10-2

 Open the Vehicle Network Toolbox XCP Block Libraries

10-3

Functions

11

attachDatabase
Attach CAN database to messages and remove CAN database from messages

Syntax
attachDatabase (message,database)
attachDatabase (message,[])

Description
attachDatabase (message,database) attaches the specified database to the specified message.
You can then use signal-based interaction with the message data, interpreting the message in its
physical form.

attachDatabase (message,[]) removes any attached database from the specified message. You
can then interpret messages in their raw form.

Examples

Attach CAN Database to Message

Attach Database.dbc to a received CAN message.

candb = canDatabase('C:\Database.dbc')
message = receive(canch,Inf)
attachDatabase(message,candb)

Input Arguments
message — CAN message for attaching or removing database
CAN message object

The name of the CAN message that you want to attach the database to or remove the database from,
specified as a CAN message object.
Example: message = receive(canch,Inf)

database — Handle of database to attach or remove
canDatabase handle

Handle of database (.dbc file) that you want to attach to the message or remove from the message,
specified as a canDatabase handle.
Example: candb = canDatabase('C:\Database.dbc')

Tips
If the specified message is an array, then the database attaches itself to each entry in the array. The
database attaches itself to the message even if the message you specified does not exist in the

11 Functions

11-2

database. The message then appears and operates like a raw message. To attach the database to the
CAN channel directly, edit the Database property of the channel object.

See Also
Functions
canDatabase | receive

Introduced in R2009a

 attachDatabase

11-3

attributeInfo
Information about CAN database attributes

Syntax
info = attributeInfo(db,'Database',AttrName)
info = attributeInfo(db,'Node',AttrName,NodeName)
info = attributeInfo(db,'Message',AttrName,MsgName)
info = attributeInfo(db,'Signal',AttrName,MsgName,SignalName)

Description
info = attributeInfo(db,'Database',AttrName) returns a structure containing information
for the specified database attribute.

If no matches are found in the database, attributeInfo returns an empty attribute information
structure.

info = attributeInfo(db,'Node',AttrName,NodeName) returns a structure containing
information for the specified node attribute.

info = attributeInfo(db,'Message',AttrName,MsgName) returns a structure containing
information for the specified message attribute.

info = attributeInfo(db,'Signal',AttrName,MsgName,SignalName) returns a structure
containing information for the specified signal attribute.

Examples

View Database Attribute Information

Create a CAN database object, and view information about its bus type and database version.

db = canDatabase('J1939DB.dbc');
db.Attributes

 'BusType'
 'DatabaseVersion'
 'ProtocolType'

info = attributeInfo(db,'Database','BusType')

 Name: 'BusType'
 ObjectType: 'Database'
 DataType: 'Double'
 DefaultValue: 'CAN-test'
 Value: 'CAN'

info = attributeInfo(db,'Database','DatabaseVersion')

 Name: 'DatabaseVersion'
 ObjectType: 'Database'

11 Functions

11-4

 DataType: 'Double'
 DefaultValue: '1.0'
 Value: '8.1'

View Node Attribute Information

View node attribute information from CAN database.

db = canDatabase('J1939DB.dbc');
db.Nodes

 'AerodynamicControl'
 'Aftertreatment_1_GasIntake'
 'Aftertreatment_1_GasOutlet'

db.NodeInfo(1).Attributes

 'ECU'
 'NmJ1939AAC'
 'NmJ1939Function'

info = attributeInfo(db,'Node','ECU','AerodynamicControl')

 Name: 'ECU'
 ObjectType: 'Network node'
 DataType: 'Double'
 DefaultValue: 'ECU-1'
 Value: 'ECU-10'

View Message Attribute Information

View message attribute information from CAN database.

db = canDatabase('J1939DB.dbc');
db.Messages

 'A1'
 'A1DEFI'
 'A1DEFSI'

db.MessageInfo(1).Attributes

a = db.MessageInfo(1).Attributes
a =
 'GenMsgCycleTime'
 'GenMsgCycleTimeFast'
 'GenMsgDelayTime'
 'VFrameFormat'

info = attributeInfo(db,'Message','GenMsgCycleTime','A1')

 Name: 'GenMsgCycleTime'
 ObjectType: 'Message'
 DataType: 'Undefined'

 attributeInfo

11-5

 DefaultValue: 0
 Value: 500

View Signal Attribute Information from Message

View message signal attribute information from CAN database.

db = canDatabase('J1939DB.dbc');
s = signalInfo(db,'A1')

s =
2x1 struct array with fields:
 Name
 Comment
 StartBit
 SignalSize
 ByteOrder
 Signed
 ValueType
 Class
 Factor
 Offset
 Minimum
 Maximum
 Units
 ValueTable
 Multiplexor
 Multiplexed
 MultiplexMode
 RxNodes
 Attributes
 AttributeInfo

s(1).Name

EngBlowerBypassValvePos

s(1).Attributes

 'GenSigEVName'
 'GenSigILSupport'
 'GenSigInactiveValue'

info = attributeInfo(db,'Signal','GenSigInactiveValue','A1','EngBlowerBypassValvePos')

 Name: 'GenSigInactiveValue'
 ObjectType: 'Signal'
 DataType: 'Undefined'
 DefaultValue: 0
 Value: 0

Input Arguments
db — CAN database
CAN database object

CAN database, specified as a CAN database object.

11 Functions

11-6

Example: db = canDatabase(_____)

AttrName — Attribute name
char vector | string

Attribute name, specified as a character vector or string.
Example: 'BusType'
Data Types: char | string

NodeName — Node name
char vector | string

Node name, specified as a character vector or string.
Example: 'AerodynamicControl'
Data Types: char | string

MsgName — Message name
char vector | string

Message name, specified as a character vector or string.
Example: 'A1'
Data Types: char | string

SignalName — Signal name
char vector | string

Signal name, specified as a character vector or string.
Example: 'EngBlowerBypassValvePos'
Data Types: char | string

Output Arguments
info — Attribute information
structure

Attribute information, returned as a structure with these fields:

Field Description
Name Attribute name
ObjectType Type of attribute
DataType Data class of attribute value
DefaultValue Default value assigned to attribute
Value Current value of attribute

 attributeInfo

11-7

See Also
Functions
nodeInfo | messageInfo | signalInfo | canDatabase | valueTableText

Properties
can.Database Properties

Introduced in R2015b

11 Functions

11-8

blfinfo
Get information about Vector BLF file

Syntax
binf = blfinfo(blfFile)

Description
binf = blfinfo(blfFile) parses general information about the format and contents of a Vector
Binary Logging Format BLF-file and returns the information in the structure binf.

Examples

View Information about BLF-File

Retrieve and view information about a BLF-file.

binf = blfinfo("c:\DataFiles\MultiChannelFile.blf")

binf =

 struct with fields:

 Name: "MultiChannelFile.blf"
 Path: "c:\DataFiles\MultiChannelFile.blf"
 Application: "CANalyzer"
 ApplicationVersion: "10.0.114"
 Objects: 35
 StartTime: 18-Jul-2018 16:47:11.490
 EndTime: 18-Jul-2018 16:47:18.490
 ChannelList: [2×3 table]

binf.ChannelList

ans =

 2×3 table

 ChannelID Protocol Objects
 _________ ________ _______

 1 "CAN FD" 4
 2 "CAN" 4

Input Arguments
blfFile — Path to BLF-file
string | char

 blfinfo

11-9

Path to BLF-file, specified as a string or character vector. The value can specify a file in the current
folder, or a relative or full path name.
Example: "MultipleChannelFile.blf"
Data Types: char | string

Output Arguments
binf — Information from BLF-file
struct

Information from BLF-file, returned as a structure with the following fields.

Name
Path
Application
ApplicationVersion
Objects
StartTime
EndTime
ChannelList

See Also
Functions
blfread | blfwrite

Introduced in R2019a

11 Functions

11-10

blfread
Read data from Vector BLF-file

Syntax
mdata = blfread(blfFile)
bdata = blfread(blfFile,chanID)
bdata = blfread(___ ,Name,Value)

Description
mdata = blfread(blfFile) reads all the data from the specified BLF-file and returns a cell array
of timetables to the variable bdata. The index of each element in the cell array corresponds to the
channel number of the data in the file.

bdata = blfread(blfFile,chanID) reads message data for the specified channel from the BLF-
file and returns a timetable.

bdata = blfread(___ ,Name,Value) reads message data filtered by parameter options for CAN
database and message IDs.

Note Support for BLF-files is limited to only CAN and CAN FD protocols on Windows operating
systems. See “File Format Limitations” on page 9-5.

Examples

Read Data from BLF-File

Read message data from a BLF-file, applying optional filters.
data = blfread("myfile.blf",2)
candb = canDatabase("testdb.dbc");

data = blfread("myfile.blf", "Database", candb)
data = blfread("myfile.blf", "Database", candb, "CANStandardFilter", 1:10)
data = blfread("myfile.blf", "Database", candb, "CANExtendedFilter", 3:7)
data = blfread("myfile.blf", "Database", candb, "CANStandardFilter", 1:10, ...
 "CANExtendedFilter", 3:7)
data = blfread("myfile.blf", "CANStandardFilter", 1:10, "CANExtendedFilter", 3:7)

Input Arguments
blfFile — Path to BLF-file
string | char

Path to BLF-file, specified as a string or character vector. The value can specify a file in the current
folder, or a relative or full path name.
Example: "MultipleChannelFile.blf"
Data Types: string | char

 blfread

11-11

chanID — Channel ID
numeric

Channel ID, specified as a numeric scalar value, for which to read data from the BLF-file. If not
specified, all channels are read.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "CANStandardFilter",1:8

Database — CAN database
can.Database

CAN database to use for message decoding, specified as a can.Database object.
Example: candb()

CANStandardFilter — Message standard IDs
numeric array

Message standard IDs, specified as an array of numeric values identifying which messages to import.
Message IDs are general, and apply to both CAN and CAN FD bus types. The value can specify a
scalar or an array of either a range or noncontiguous IDs. By default, all standard ID messages are
imported.
Example: [1:10 45 100:123]
Data Types: string | char

CANExtendedFilter — Message extended IDs
numeric array

Message extended IDs, specified as an array of numeric values identifying which messages to import.
Message IDs are general, and apply to both CAN and CAN FD bus types. The value can specify a
scalar or an array of either a range or noncontiguous IDs. By default, all extended ID messages are
imported.
Example: [1 8:10 1001:1080]
Data Types: string | char

Output Arguments
mdata — Message data from BLF-file
cell array of timetables | timetable

Message data from BLF-file, returned as a cell array of timetables. If you specify a single channel to
read, this returns a timetable.

11 Functions

11-12

See Also
Functions
blfinfo | blfwrite | canDatabase

Topics
“File Format Limitations” on page 9-5

Introduced in R2019a

 blfread

11-13

blfwrite
Write data to Vector BLF-file

Syntax
blfwrite(blfFile,data,chanID,prot)

Description
blfwrite(blfFile,data,chanID,prot) writes the specified timetables in data to the specified
BLF-file. The function allows writing only to new files, so you cannot overwrite existing files or data.

Note Support for BLF-files is limited to only CAN and CAN FD protocols on Windows operating
systems. See “File Format Limitations” on page 9-5.

Examples

Write Data to a BLF-File

Write timetables of data to specified channels.

Write one data set to a single channel.

blfwrite("newfile.blf",data,1,"CAN")

Write two data sets to the same channel.

blfwrite("newfile.blf",{data1,data2},[1,1],["CAN FD","CAN FD"])

Write two data sets to separate channels with different protocols.

blfwrite("newfile.blf",{data1,data2},[1,2],["CAN","CAN FD"])

Input Arguments
blfFile — Path to BLF-file
string | char

Path to BLF-file to write, specified as a string or character vector. The value can specify a file in the
current folder, or a relative or full path name.
Example: "MultipleChannelFile.blf"
Data Types: string | char

data — Data to write to BLF-file
timetable

11 Functions

11-14

Data to write to BLF-file, specified as a timetable or cell array of timetables. You can write multiple
tables for the same channel if the protocol is the same.
Data Types: timetable

chanID — Channel IDs
numeric

Channel IDs, specified as a numeric scalar or array value, identifying the channels on which the data
is written.
Example: [1,2,4]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prot — Message protocol
"CAN""CAN FD"

Message protocol, specified as "CAN", "CAN FD". When writing multiple sets of data, specify
protocol as an array of strings corresponding to the data sets being written.
Example: ["CAN","CAN FD","CAN"]
Data Types: char | string

See Also
Functions
blfinfo | blfread

Topics
“File Format Limitations” on page 9-5

Introduced in R2019a

 blfwrite

11-15

canChannel
Construct CAN channel connected to specified device

Syntax
canch = canChannel(vendor,device,devicechannelindex)
canch = canChannel(vendor,device)
canch = canChannel(___ ,'ProtocolMode','CAN FD')

Description
canch = canChannel(vendor,device,devicechannelindex) returns a CAN channel
connected to a device from a specified vendor.

For Vector products, device is a character vector that combines the device type and a device index,
such as 'CANCaseXL 1'. For example, if there are two CANcardXL devices, device can be
'CANcardXL 1' or 'CANcardXL 2'.

Use canch = canChannel(vendor,device) for National Instruments and PEAK-System devices.

For National Instruments, vendor is the character vector 'NI', and the devicenumber is interface
number defined in the NI Measurement & Automation Explorer.

For PEAK-System devices vendor is the character vector 'PEAK-System', and the devicenumber
is device number defined for the channel.

canch = canChannel(___ ,'ProtocolMode','CAN FD') returns a channel connected to a
device supporting CAN FD. The default ProtocolMode setting is 'CAN', indicating standard CAN
support. A channel configured for 'CAN' cannot transmit or receive CAN FD messages.

Examples

Create CAN Channels for Various Vendors

Create CAN channels for each of several vendors.

canch1 = canChannel('Vector','CANCaseXL 1',1);
canch2 = canChannel('Vector','Virtual 1',2);
canch3 = canChannel('NI','CAN1');
canch4 = canChannel('PEAK-System','PCAN_USBBUS1');
canch5 = canChannel('MathWorks','Virtual 1',2)

canch5 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0

11 Functions

11-16

 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

Create CAN FD Channel

Create a CAN FD channel on a MathWorks virtual device.

canch6 = canChannel('MathWorks','Virtual 1',2,'ProtocolMode','CAN FD')

canch6 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN FD'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Bit Timing Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 ArbitrationBusSpeed: []
 DataBusSpeed: []

 Other Information
 Database: []
 UserData: []

Input Arguments
vendor — CAN device vendor
'MathWorks' | 'Kvaser' | 'NI' | 'PEAK-System' | 'Vector'

 canChannel

11-17

CAN device vendor, specified as 'MathWorks', 'Kvaser', 'NI', 'PEAK-System', or 'Vector'.
Example: 'MathWorks'
Data Types: char | string

device — CAN to connect channel to
character vector | string

CAN device to connect channel to, specified as a character vector or string. Valid values depend on
the specified vendor.
Example: 'Virtual 1'
Data Types: char | string

devicechannelindex — CAN device channel port or index
numeric value

CAN device channel port or index, specified as a numeric value.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
canch — CAN device channel
CAN channel object

CAN device channel, returned as a can.Channel object, with can.Channel Properties.

Tips
• Use canChannelList to obtain a list of available devices.
• You cannot have more than one canChannel configured on the same NI-XNET or PEAK-System

device channel.
• You cannot use the same variable to create multiple channels sequentially. Clear any channel in

use before using the same variable to construct a new CAN channel.
• You cannot create arrays of CAN channel objects. Each object you create must exist as its own

individual variable.

See Also
Functions
canChannelList

Properties
can.Channel Properties

Introduced in R2009a

11 Functions

11-18

CAN.ChannelInfo class
Package: CAN

Display device channel information

Note can.ChannelInfo will be removed in a future release. Use canChannelList instead.

Description
vendor.ChannelInfo(index) displays channel information for the device vendor with the
specified index. Obtain the vendor information using CAN.VendorInfo.

Input Arguments
index — Device channel index
numeric value

Device channel index specified as a numeric value.

Properties
Device

Name of the device.

DeviceChannelIndex

Index number of the specified device channel.

DeviceSerialNumber

Serial number of the specified device.

ObjectConstructor

Information on how to construct a CAN channel using this device.

Examples

Examine Kvaser Device Channel Information

Get information on installed CAN devices.

info = canHWInfo

info =

CAN Devices Detected

 CAN.ChannelInfo class

11-19

Vendor	Device	Channel	Serial Number	Constructor
 Kvaser | Virtual 1 | 1 | 0 | canChannel('Kvaser', 'Virtual 1', 1)
 Kvaser | Virtual 1 | 2 | 0 | canChannel('Kvaser', 'Virtual 1', 2)
 Vector | Virtual 1 | 1 | 0 | canChannel('Vector', 'Virtual 1', 1)
 Vector | Virtual 1 | 2 | 0 | canChannel('Vector', 'Virtual 1', 2)

Save the Kvaser device information in an object.

vendor = info.VendorInfo(1);

Get information on the first channel of the specified device.

vendor.ChannelInfo(1)

ans =

 ChannelInfo with properties:

 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ObjectConstructor: 'canChannel('Kvaser', 'Virtual 1', 1)'

See Also
Functions
canHWInfo | can.VendorInfo

11 Functions

11-20

canChannelList
Information on available CAN devices

Syntax
chans = canChannelList

Description
chans = canChannelList returns a table of information about available CAN devices.

Examples

View Available CAN Devices

View available CAN devices and programmatically read a device's supported protocol modes.

chans = canChannelList

chans =

 4×6 table

 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 ___________ ___________ _______ ___________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "Vector" "Virtual 1" 1 "Virtual" "CAN" "0"
 "Vector" "Virtual 1" 2 "Virtual" "CAN" "0"

pm = chans{3,5}

pm =

 "CAN"

pm = chans{3,'ProtocolMode'}

pm =

 "CAN"

Output Arguments
chans — Information on available CAN devices
table

Information on available CAN devices, returned as a table. To access specific elements, you can index
into the table.

 canChannelList

11-21

See Also
Functions
canChannel

Introduced in R2017b

11 Functions

11-22

canDatabase
Create handle to CAN database file

Syntax
candb = canDatabase('dbfile.dbc')

Description
candb = canDatabase('dbfile.dbc') creates a handle to the specified database file
dbfile.dbc. You can specify a file name, a full path, or a relative path. MATLAB looks for
dbfile.dbc on the MATLAB path. Vehicle Network Toolbox supports Vector CAN database (.dbc)
files.

Examples

Create CAN Database Object

Create objects for example database files.

candb = canDatabase([(matlabroot) '\examples\vnt\demoVNT_CANdbFiles.dbc'])

candb =

 Database with properties:

 Name: 'demoVNT_CANdbFiles'
 Path: 'F:\matlab\examples\vnt\demoVNT_CANdbFiles.dbc'
 Nodes: {}
 NodeInfo: [0×0 struct]
 Messages: {5×1 cell}
 MessageInfo: [5×1 struct]
 Attributes: {}
 AttributeInfo: [0×0 struct]
 UserData: []

candb = canDatabase([(matlabroot) '\examples\vnt\J1939.dbc'])

candb =

 Database with properties:

 Name: 'J1939'
 Path: 'F:\matlab\examples\vnt\J1939.dbc'
 Nodes: {2×1 cell}
 NodeInfo: [2×1 struct]
 Messages: {2×1 cell}
 MessageInfo: [2×1 struct]
 Attributes: {3×1 cell}

 canDatabase

11-23

 AttributeInfo: [3×1 struct]
 UserData: []

Input Arguments
dbfile.dbc — Database file name
char vector | string

Database file name, specified as a character vector or string.. You can specify just the name or the full
path of the database file.
Example: 'J1939.dbc'
Data Types: char | string

Output Arguments
candb — CAN database
database object

CAN database, returned as a database object with can.Database Properties.

See Also
Functions
canMessage

Properties
can.Database Properties

Introduced in R2009a

11 Functions

11-24

CAN Explorer
Acquire and visualize CAN data

Description
The CAN Explorer app allows you to acquire and visualize CAN data, filtering on specified signals
and messages.

Using this app, you can:

• Configure device channels and acquisition properties.
• Apply CAN database configurations.
• Preview data.
• Export data to the MATLAB workspace
• Export the app setup to a MATLAB script.

Open the CAN Explorer App
• MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
• MATLAB command prompt: Enter canExplorer.

 CAN Explorer

11-25

Examples
• “Receive and Visualize CAN Data Using CAN Explorer” on page 14-192

Limitations
• For performance reasons, there are limitations on the number of messages saved or displayed in

the app.
• Although the app configuration is saved for the next time the same user opens it, you cannot save

or export the app configuration to share with other users.
• The CAN Explorer supports only the CAN protocol. For CAN FD protocol data, use the CAN FD

Explorer.
• The apps does not support J1939 data.

See Also
Apps
CAN FD Explorer

Topics
“Receive and Visualize CAN Data Using CAN Explorer” on page 14-192

Introduced in R2021a

11 Functions

11-26

canFDChannel
Construct CAN FD channel connected to specified device

Syntax
canch = canFDChannel(vendor,device,devicechannelindex)
canch = canFDChannel(vendor,device)

Description
canch = canFDChannel(vendor,device,devicechannelindex) returns a CAN FD channel
connected to a device from a specified vendor.

For Vector and Kvaser products, device combines the device type and a device index, such as
'CANCaseXL 1'. For example, if there are two Vector devices, device can be 'VN1610 1' or
'VN1610 2'.

canch = canFDChannel(vendor,device) returns a CAN FD channel connected to a National
Instruments or PEAK-System device.

For National Instruments, vendor is the character vector 'NI', and the devicenumber is the
interface number defined in the NI Measurement & Automation Explorer.

For PEAK-System devices vendor is the character vector 'PEAK-System', and devicenumber is
the device number defined for the channel.

Examples

Create CAN FD Channels for Various Vendors

Create CAN FD channels for each of several vendors.

ch1 = canFDChannel('Vector','VN1610 1',1);
ch2 = canFDChannel('Kvaser','USBcan Pro 1',1);
ch3 = canFDChannel('NI','CAN0');
ch4 = canFDChannel('PEAK-System','PCAN_USBBUS1');
ch5 = canFDChannel('MathWorks','Virtual 1',1)

ch5 =

 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN FD'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1

 canFDChannel

11-27

 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Bit Timing Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 ArbitrationBusSpeed: []
 DataBusSpeed: []

 Other Information
 Database: []
 UserData: []

Input Arguments
vendor — CAN device vendor
'MathWorks' | 'Kvaser' | 'NI' | 'PEAK-System' | 'Vector'

CAN device vendor, specified as 'MathWorks', 'Kvaser', 'NI', 'PEAK-System', or 'Vector'.
Example: 'MathWorks'
Data Types: char | string

device — CAN FD device to connect channel to
character vector | string

CAN FD device to connect channel to, specified as a character vector or string. Valid values depend
on the specified vendor.
Example: 'Virtual 1'
Data Types: char | string

devicechannelindex — CAN FD device channel port or index
numeric value

CAN FD device channel port or index, specified as a numeric value.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
canch — CAN FD device channel
CAN FD channel object

CAN FD device channel returned as a CAN channel object, with the following properties.

CAN Channel Properties:

CAN Device Properties:

Bit Timing Properties:

11 Functions

11-28

Tips
• Use canFDChannelList to obtain a list of available device channels.
• You cannot have more than one CAN FD channel configured on the same NI-XNET or PEAK-

System device channel.
• You cannot use the same variable to create multiple channels sequentially. Clear any channel in

use before using the same variable to construct a new channel object.
• You cannot create arrays of channel objects. Each object you create must exist as its own

individual variable.

See Also
Functions
canFDChannelList

Introduced in R2018b

 canFDChannel

11-29

canFDChannelList
Information on available CAN FD device channels

Syntax
chans = canFDChannelList

Description
chans = canFDChannelList returns a table of information about available CAN FD devices.

Examples

View Available CAN FD Device Channels

View available CAN FD device channels and programmatically read supported protocol modes.

chans = canFDChannelList

chans =

 2×6 table

 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 ___________ ___________ _______ ___________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"

pm = chans{2,5}

pm =

 "CAN, CAN FD"

pm = chans{2,'ProtocolMode'}

pm =

 "CAN, CAN FD"

Output Arguments
chans — Information on available CAN FD devices
table

Information on available CAN FD device channels, returned as a table. To access specific elements,
you can index into the table.

See Also
Functions
canFDChannel

11 Functions

11-30

Introduced in R2018b

 canFDChannelList

11-31

CAN FD Explorer
Acquire and visualize CAN FD data

Description
The CAN FD Explorer app allows you to acquire and visualize CAN FD data, filtering on specified
signals and messages.

Using this app, you can:

• Configure device channels and acquisition properties.
• Apply CAN FD database configurations.
• Preview data.
• Export data to the MATLAB workspace
• Export the app setup to a MATLAB script.

Open the CAN FD Explorer App
• MATLAB Toolstrip: On the Apps tab, under Test and Measurement, click the app.
• MATLAB command prompt: Enter canFDExplorer.

11 Functions

11-32

Examples
• “Receive and Visualize CAN FD Data Using CAN FD Explorer” on page 14-198

Limitations
• For performance reasons, there are limitations on the number of messages saved or displayed in

the app.
• Although the app configuration is saved for the next time the same user opens it, you cannot save

or export the app configuration to share with other users.
• The CAN FD Explorer supports only the CAN FD protocol. For CAN protocol data, use the CAN

Explorer.
• The apps does not support J1939 data.

See Also
Apps
CAN Explorer

Topics
“Receive and Visualize CAN FD Data Using CAN FD Explorer” on page 14-198

Introduced in R2021a

 CAN FD Explorer

11-33

canFDMessage
Build CAN FD message based on user-specified structure

Syntax
message = canFDMessage(id,extended,datalength)
message = canFDMessage(candb,messagename)

Description
message = canFDMessage(id,extended,datalength) creates a CAN FD message object from
the raw message information.

message = canFDMessage(candb,messagename) creates a message using the message definition
in the specified database. Because ProtocolMode is defined in the message database, you cannot
specify it as an argument to canFDMessage when using a database.

Examples

Create a CAN FD Message with Database Definitions

Create a CAN FD message using the definitions of a CAN database.

candb = canDatabase(string([(matlabroot) '\examples\vnt\CANFDExample.dbc']));
message3 = canFDMessage(candb,'CANFDMessage')

message3 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN FD'
 ID: 1
 Extended: 0
 Name: 'CANFDMessage'

 Data Details
 Timestamp: 0
 Data: [1x48 uint8]
 Signals: []
 Length: 48
 DLC: 14

 Protocol Flags
 BRS: 1
 ESI: 0
 Error: 0

 Other Information
 Database: [1×1 can.Database]

11 Functions

11-34

 UserData: []

Create a CAN FD Message

Create a CAN FD message with a standard ID format.

message2 = canFDMessage(1000,false,64)

message2 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN FD'
 ID: 1000
 Extended: 0
 Name: ''

 Data Details
 Timestamp: 0
 Data: [1×64 uint8]
 Signals: []
 Length: 64
 DLC: 15

 Protocol Flags
 BRS: 0
 ESI: 0
 Error: 0

 Other Information
 Database: []
 UserData: []

Input Arguments
id — ID of message
numeric value

ID of the message, specified as a numeric value. If this ID used an extended format, set the
extended argument true.
Example: 2500
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

extended — Specify if message ID is extended
true | false

Specifies whether the message ID is of standard or extended type, specified as true or false. The
logical value true indicates that the ID is of extended type (29 bits), false indicates standard type
(11 bits).
Example: true

 canFDMessage

11-35

Data Types: logical

datalength — Length of message data
integer value 0 to 64

The length of the message data, specified as an integer value of 0 through 64, inclusive.
Example: 64
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

candb — CAN database
CAN database object

CAN database, specified as a database object. The database contains the message definition.
Example: candb = canDatabase('CANDatabase.dbc')

messagename — Name of message
char vector | string

The name of the message definition in the database, specified as a character vector or string.
Example: 'VehicleDataMulti'
Data Types: char | string

Output Arguments
message — CAN FD message
CAN message object

CAN FD message, returned as a CAN message object, with the following properties:

Property Purpose
BRS CAN FD bit rate switch, as true or false
Data Data of CAN message or J1939 parameter group
Database CAN database information
DLC Data length code value
Error CAN message error frame, as true or false
ESI CAN FD error state indicator, as true or false
Extended True of false indication of extended CAN

Identifier type
ID Identifier for CAN message
Length Message length in bytes
Name CAN message name
ProtocolMode Protocol mode defined as CAN or CAN FD
Remote Specify if CAN message is remote frame
Signals Physical signals defined in CAN message or J1939

parameter group

11 Functions

11-36

Property Purpose
Timestamp Message received timestamp
UserData Custom data

See Also
Functions
attachDatabase | canDatabase | extractAll | extractRecent | extractTime | pack | unpack

Introduced in R2018b

 canFDMessage

11-37

canFDMessageBusType
Create Simulink CAN FD message bus

Syntax
canFDMessageBusType
canFDMessageBusType(modelName)

Description
canFDMessageBusType creates a Simulink CAN FD message bus object named
CAN_FD_MESSAGE_BUS in the base workspace. The values of the object properties are read-only, but
useful for showing the structure of its data.

canFDMessageBusType(modelName) creates a Simulink CAN FD message bus object named
CAN_FD_MESSAGE_BUS in the data dictionary associated with the specified model, modelName.

Examples

Create CAN FD Message Bus Object

Create and view the properties of a Simulink CAN FD message bus object.

canFDMessageBusType
CAN_FD_MESSAGE_BUS

CAN_FD_MESSAGE_BUS =

 Bus with properties:

 Description: ''
 DataScope: 'Auto'
 HeaderFile: ''
 Alignment: -1
 Elements: [12×1 Simulink.BusElement]

View the Elements properties of the bus.

CAN_FD_MESSAGE_BUS.Elements

ans =

 12×1 BusElement array with properties:

 Min
 Max
 DimensionsMode
 SampleTime
 Description
 Unit
 Name

11 Functions

11-38

 DataType
 Complexity
 Dimensions

Input Arguments
modelName — Name of model
char vector | string

Name of model, specified as a character vector or string, whose data dictionary is updated with the
bus object.
Example: 'CANFDModel'
Data Types: char | string

See Also
Blocks
CAN FD Pack | CAN FD Receive | CAN FD Replay

Topics
“Create Custom CAN Blocks” on page 8-15
“Composite Signals” (Simulink)

Introduced in R2018a

 canFDMessageBusType

11-39

canFDMessageReplayBlockStruct
Convert CAN FD messages for use as CAN Replay block output

Syntax
msgstructofarrays = canFDMessageReplayBlockStruct(msgs)

Description
msgstructofarrays = canFDMessageReplayBlockStruct(msgs) formats the specified CAN
FD messages for use with the CAN FD Replay block. The CAN FD Replay block requires a specific
format for CAN FD messages, defined by a structure of arrays containing the ID, Extended, Data, and
other message elements.

Use this function to assign the formatted message structure to a variable. Then save that variable to a
MAT-file. The CAN FD Replay block mask allows selection of this MAT file and the variable within it,
to replay the messages in a Simulink model.

Examples

Create Message Structure for CAN FD Replay Block

Create a message structure for the CAN FD Replay block, and save it to a MAT-file.

canMsgs = canFDMessageReplayBlockStruct(messages);
save('ReplayBlockMessages.mat','canMsgs');

Input Arguments
msgs — Original CAN FD messages
CAN message objects | CAN FD message timetable

Original CAN FD messages, specified as a CAN FD message timetable or an array of CAN message
objects.

Output Arguments
msgstructofarrays — Formatted CAN FD messages
struct

Formatted CAN FD messages, returned as structure of arrays containing the ID, Extended, Data, and
other elements of the messages.

See Also
Functions
canFDMessageTimetable | save

11 Functions

11-40

Blocks
CAN Replay

Introduced in R2018b

 canFDMessageReplayBlockStruct

11-41

canFDMessageTimetable
Convert CAN or CAN FD messages into timetable

Syntax
msgtimetable = canFDMessageTimetable(msg)
msgtimetable = canFDMessageTimetable(msg,database)

Description
msgtimetable = canFDMessageTimetable(msg) creates a CAN FD message timetable from an
existing CAN FD message timetable, an array of CAN message objects, or a CAN FD message
structure from the CAN FD Log block. The output message timetable contains the raw message
information (ID, Extended, Data, etc.) from the messages. If CAN message objects are input which
contain decoded information, that decoding is retained in the CAN FD message timetable.

msgtimetable = canFDMessageTimetable(msg,database) uses the database to decode the
message names and signals for the timetable along with the raw message information. Specify
multiple databases in an array to decode message names and signals in the timetable within a single
call.

The input msg can also be a timetable of data created by using read on an mdfDatastore object. In
this case, the function converts the timetable of ASAM standard logging format data to a Vehicle
Network Toolbox CAN FD message timetable.

Examples

Convert Log Block Output to Timetable

Convert log block output to a CAN FD message timetable.

 load LogBlockOutput.mat;
 db = canDatabase('myDatabase.dbc');
 msgTimetable = canFDMessageTimetable(canMsgs,db);

Convert Message Objects to CAN FD Message Timetable

Convert an array of CAN message objects to a CAN FD message timetable.

msgTimetable = canFDMessageTimetable(canMsgs);

Decode Message Timetable with Database

Decode an existing CAN FD message timetable with a database.

db = canDatabase('myDatabase.dbc')
msgTimetable = canFDMessageTimetable(msgTimetable,db)

11 Functions

11-42

The result is returned to the original timetable variable.

Convert an ASAM MDF Message Timetable

Convert an existing ASAM format message timetable, and decode using a database.

m = mdf('CANandCANFD.MF4');
db = canDatabase('CustomerDatabase.dbc');
mdfData = read(m);
msgTimetable = canFDMessageTimetable(mdfData{2},db);

Compare the two timetables.

mdfData{2}(1:4,1:6)

ans =

 4×6 timetable

 Time CAN_DataFrame_BusChannel CAN_DataFrame_FlagsEx CAN_DataFrame_Dir CAN_DataFrame_SingleWire CAN_DataFrame_WakeUp CAN_DataFrame_SRR
 ___________ ________________________ _____________________ _________________ ________________________ ____________________ _________________

 0.30022 sec 1 2.1095e+06 1 0 0 0
 0.45025 sec 1 2.0972e+06 1 0 0 0
 0.60022 sec 1 2.1095e+06 1 0 0 0
 0.75013 sec 1 2.1095e+06 1 0 0 0

msgTimetable(1:4,1:8)

ans =

 4×8 timetable

 Time ID Extended Name ProtocolMode Data Length DLC Signals
 ___________ ____ ________ ____ ____________ ____________ ______ ___ ____________

 0.30022 sec 768 false '' 'CAN FD' [1×64 uint8] 64 15 [0×0 struct]
 0.45025 sec 1104 false '' 'CAN' [1×8 uint8] 8 8 [0×0 struct]
 0.60022 sec 768 false '' 'CAN FD' [1×64 uint8] 64 15 [0×0 struct]
 0.75013 sec 1872 false '' 'CAN FD' [1×24 uint8] 24 12 [0×0 struct]

Input Arguments
msg — Raw CAN messages
CAN FD message timetable, array, or structure

Raw CAN messages, specified as a CAN FD message timetable, an array of CAN message objects, a
CAN message structure from the CAN log block, or an asam.MDF object..
Example: canFDMessage()

database — CAN database
database object

CAN database, specified as a database object.
Example: database = canDatabase('CANDatabase.dbc')

Output Arguments
msgtimetable — CAN FD message timetable
timetable

 canFDMessageTimetable

11-43

CAN FD messages returned as a timetable.

See Also
Functions
canSignalTimetable | canDatabase | mdfDatastore | read (MDFDatastore)

Introduced in R2018b

11 Functions

11-44

canHWInfo
(To be removed) Information on available CAN devices

Note canHWInfo will be removed in a future release. Use canChannelList instead.

Syntax
hw = canHWInfo

Description
hw = canHWInfo returns information about CAN devices, and displays the information organized by
vendors and channels.

Examples

Detect CAN Devices

Detect the available CAN devices and investigate a device channel.

hw = canHWInfo

hw =

CAN Devices Detected

Vendor	Device	Channel	Serial Number	Constructor...
 MathWorks | Virtual 1 | 1 | 0 |canChannel(...
 MathWorks | Virtual 1 | 2 | 0 |canChannel(...
 Kvaser | Virtual 1 | 1 | 0 |canChannel(...
 Kvaser | Virtual 1 | 2 | 0 |canChannel(...
 NI | Virtual (CAN256) | 1 | 0 |canChannel(...
 NI | Virtual (CAN257) | 2 | 0 |canChannel(...
 NI | Series 847X Sync USB (CAN0)| 1 | 12345C |canChannel(...
 NI | 9862 CAN/HS (CAN1) | 1 | 12345A |canChannel(...
 Vector | Virtual 1 | 1 | 0 |canChannel(...
 Vector | Virtual 1 | 2 | 0 |canChannel(...
 PEAK-System | PCAN-USB Pro (PCAN_USBBUS1)| 1 | 0 |canChannel(...
 PEAK-System | PCAN-USB Pro (PCAN_USBBUS2)| 2 | 0 |canChannel(...

View the Vector properties to see its VendorDriverVersion.

v = hw.VendorInfo(4)

v =

 VendorInfo with properties:

 VendorName: 'Vector'
 VendorDriverDescription: 'XL Driver Library'
 VendorDriverVersion: '9000022'
 ChannelInfo: [1×2 can.vector.ChannelInfo]

 canHWInfo

11-45

View the first Vector channel information.

c1 = hw.VendorInfo(4).ChannelInfo(1)

c1 =

 ChannelInfo with properties:

 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ObjectConstructor: 'canChannel('Vector','Virtual 1',1)'

Output Arguments
hw — CAN devices detected
can.HardwareInfo object

CAN devices detected, returned as a can.HardwareInfo object. You can programmatically access
vendor and channel information by indexing into the output object VendorInfo property.

See Also
Functions
canChannelList | canChannel

Introduced in R2009a

11 Functions

11-46

canMessage
Build CAN message based on user-specified structure

Syntax
message = canMessage(id,extended,datalength)
message = canMessage(id,extended,datalength,'ProtocolMode','CAN FD')
message = canMessage(candb,messagename)

Description
message = canMessage(id,extended,datalength) creates a CAN message object from the
raw message information.

message = canMessage(id,extended,datalength,'ProtocolMode','CAN FD') creates a
CAN FD message. The default ProtocolMode is standard 'CAN'.

message = canMessage(candb,messagename) creates a message using the message definition in
the specified database. Because ProtocolMode is defined in the message database, you cannot
specify it as an argument to canMessage when using a database.

Examples

Create a CAN Message

Create a CAN message with an extended ID format.

message1 = canMessage(2500,true,4)

message1 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 2500
 Extended: 1
 Name: ''

 Data Details
 Timestamp: 0
 Data: [0 0 0 0]
 Signals: []
 Length: 4

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information

 canMessage

11-47

 Database: []
 UserData: []

Create a CAN FD Message

Create a CAN FD message with a standard ID format.

message2 = canMessage(1000,false,64,'ProtocolMode','CAN FD')

message2 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN FD'
 ID: 1000
 Extended: 0
 Name: ''

 Data Details
 Timestamp: 0
 Data: [1×64 uint8]
 Signals: []
 Length: 64
 DLC: 15

 Protocol Flags
 BRS: 0
 ESI: 0
 Error: 0

 Other Information
 Database: []
 UserData: []

Create a Message with Database Definitions

Create a message using the definitions of a CAN database.

candb = canDatabase(string([(matlabroot) '\examples\vnt\VehicleInfo.dbc']))
message3 = canMessage(candb,'WheelSpeeds')

message3 =

 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 1200
 Extended: 0
 Name: 'WheelSpeeds'

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]

11 Functions

11-48

 Signals: [1×1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1×1 can.Database]
 UserData: []

Input Arguments
id — ID of message
numeric value

ID of the message, specified as a numeric value. If this ID used an extended format, set the
extended argument true.
Example: 2500
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

extended — Indicate if message ID is extended
true | false

Indicates whether the message ID is of standard or extended type, specified as true or false. The
logical value true indicates that the ID is of extended type, false indicates standard type.
Example: true
Data Types: logical

datalength — Length of message data
integer value 0-8

The length of the message data, specified as an integer value of 0 through 8, inclusive.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

candb — CAN database
CAN database object

CAN database, specified as a database object. The database contains the message definition.
Example: candb = canDatabase('CANdb.dbc')

messagename — Name of message
char vector | string

The name of the message definition in the database, specified as a character vector or string.
Example: 'VehicleDataMulti'
Data Types: char | string

 canMessage

11-49

Output Arguments
message — CAN message
CAN message object

CAN message, returned as a CAN message object, with can.Message Properties.

See Also
Functions
attachDatabase | canDatabase | extractAll | extractRecent | extractTime | pack | unpack

Properties
can.Message Properties

Introduced in R2009a

11 Functions

11-50

canMessageBusType
Create Simulink CAN message bus

Syntax
canMessageBusType
canMessageBusType(modelName)

Description
canMessageBusType creates a Simulink CAN message bus object named CAN_MESSAGE_BUS in the
base workspace. The values of the object properties are read-only, but useful for showing the
structure of its data.

canMessageBusType(modelName) creates a Simulink CAN message bus object of type
CAN_MESSAGE_BUS in the data dictionary associated with the specified model, modelName.

Examples

Create CAN Message Bus Object

Create and view the properties of a Simulink CAN message bus object.

canMessageBusType
CAN_MESSAGE_BUS

CAN_MESSAGE_BUS =

 Bus with properties:

 Description: ''
 DataScope: 'Auto'
 HeaderFile: ''
 Alignment: -1
 Elements: [7×1 Simulink.BusElement]

View the Elements properties.

CAN_MESSAGE_BUS.Elements

ans =

 7×1 BusElement array with properties:

 Min
 Max
 DimensionsMode
 SampleTime
 Description
 Unit
 Name

 canMessageBusType

11-51

 DataType
 Complexity
 Dimensions

Input Arguments
modelName — Name of model
char vector | string

Name of model, specified as a character vector or string, whose data dictionary is updated with the
bus object.
Example: 'CANModel'
Data Types: char | string

See Also
Blocks
CAN Pack | CAN Receive | CAN Replay

Topics
“Create Custom CAN Blocks” on page 8-15
“Composite Signals” (Simulink)

Introduced in R2017b

11 Functions

11-52

canMessageImport
Import CAN messages from third-party log file

Syntax
message = canMessageImport(file,vendor)
message = canMessageImport(file,vendor,candb)
message = canMessageImport(___ ,'OutputFormat','timetable')

Description
message = canMessageImport(file,vendor) imports CAN messages from the log file, file,
from a third-party vendor, vendor. All the messages in the log file are imported as an array of CAN
message objects.

After importing, you can analyze, transmit, or replay these messages.

canMessageImport assumes that the information in the imported log file is in a hexadecimal format,
and that the timestamps in the imported log file are absolute values.

message = canMessageImport(file,vendor,candb) applies the information in the specified
database to the imported CAN log messages.

To import Vector log files with symbolic message names, specify an appropriate database file.

message = canMessageImport(___ ,'OutputFormat','timetable') returns a timetable of
messages. This is the recommended output format for optimal performance and representation of
CAN messages within MATLAB.

Examples

Import Raw Messages

Import raw messages from a log file.
message = canMessageImport('MsgLog.asc','Vector','OutputFormat','timetable');

Import Messages with Database

Import messages from a log file, using database information for physical messages.
candb = canDatabase('myDatabase.dbc');
message = canMessageImport('MsgLog.txt','Kvaser',candb,'OutputFormat','timetable');

Input Arguments
file — Name of CAN message log file
char vector | string

 canMessageImport

11-53

Name of CAN message log file, specified as a character vector or string.
Example: 'MsgLog.asc'
Data Types: char | string

vendor — Name of vendor
char vector | string

Name of vendor, specified as a character vector or string, whose CAN message log file you are
importing from.

You can import message logs only in certain file formats: ASCII files from Vector, and text files from
Kvaser.
Example: 'Vector'
Data Types: char | string

candb — CAN database
database object

CAN database, specified as a database object. This is the database whose information is applied to
the imported log file messages.
Example: candb = canDatabase('CANdb.dbc')

Output Arguments
message — Imported messages
array of CAN message objects | timetable

Imported messages, returned as an array of CAN message objects or as a timetable of messages.

See Also
Functions
canDatabase | receive | transmit

Introduced in R2010b

11 Functions

11-54

canMessageReplayBlockStruct
Convert CAN messages for use as CAN Replay block output

Syntax
msgstructofarrays = canMessageReplayBlockStruct(msgs)

Description
msgstructofarrays = canMessageReplayBlockStruct(msgs) formats specified CAN
messages for use with the CAN Replay block. The CAN Replay block requires a specific format for
CAN messages, defined by a structure of arrays containing the ID, Extended, Data, and other
message elements.

Use this function to assign the formatted message structure to a variable. Then save this variable to a
MAT-file. The CAN Replay block mask allows selection of this MAT file and the variable within it, to
define the messages to replay in a Simulink model.

Examples

Create CAN Replay Block Message Structure

Create a message structure for the CAN Replay block, and save it to a MAT-file.

canMsgs = canMessageReplayBlockStruct(messages);
save('ReplayBlockMessages.mat','canMsgs');

Input Arguments
msgs — Original CAN messages
CAN message objects | CAN message timetable

Original CAN messages, specified as a CAN message timetable or an array of CAN message objects.

Output Arguments
msgstructofarrays — Formatted CAN messages
struct

Formatted CAN messages, returned as structure of arrays containing the ID, Extended, Data, and
other elements of the messages.

See Also
Functions
canMessageTimetable | save

 canMessageReplayBlockStruct

11-55

Blocks
CAN Replay

Introduced in R2017a

11 Functions

11-56

canMessageTimetable
Convert CAN messages into timetable

Syntax
msgtimetable = canMessageTimetable(msg)
msgtimetable = canMessageTimetable(msg,database)

Description
msgtimetable = canMessageTimetable(msg) creates a CAN message timetable from existing
raw messages. The output message timetable contains the raw message information (ID, Extended,
Data, etc.) from the messages. If CAN message objects are input which contain decoded information,
that decoding is retained in the CAN message timetable. A timetable of CAN message data can often
provide better performance than using CAN message objects.

msgtimetable = canMessageTimetable(msg,database) uses the database to decode the
message names and signals for the timetable along with the raw message information. Specify
multiple databases in an array to decode message names and signals in the timetable within a single
call.

The input msg can also be a timetable of data created by using read on an mdf object. In this case,
the function converts the timetable of ASAM standard logging format data to a Vehicle Network
Toolbox CAN message timetable.

Examples

Convert Log Block Output to Timetable

Convert log block output to a CAN message timetable.

 load LogBlockOutput.mat
 db = canDatabase('myDatabase.dbc')
 msgTimetable = canMessageTimetable(canMsgs,db)

Convert CAN Message Objects to Timetable

Convert legacy CAN message objects to a CAN message timetable.

msgTimetable = canMessageTimetable(canMsgs);

Decode Message Timetable with Database

Decode an existing CAN message timetable with a database.

 canMessageTimetable

11-57

db = canDatabase('myDatabase.dbc')
msgTimetable = canMessageTimetable(msgTimetable,db)

Convert an ASAM MDF Message Timetable

Convert an existing ASAM format message timetable, and decode using a database.

m = mdf('mdfFiles\CANonly.MF4');
db = canDatabase('dbFiles\dGenericVehicle.dbc');
mdfData = read(m);
msgTimetable = canMessageTimetable(mdfData{1},db);

Compare the two timetables.

 mdfData{1}(1:4,1:6)

ans =

 4×6 timetable

 Time CAN_DataFrame_DataLength CAN_DataFrame_WakeUp CAN_DataFrame_SingleWire CAN_DataFrame_IDE CAN_DataFrame_ID CAN_DataFrame_Flags
 ____________ ________________________ ____________________ ________________________ _________________ ________________ ___________________

 0.019968 sec 4 0 0 0 100 0
 0.029964 sec 4 0 0 0 100 0
 0.039943 sec 4 0 0 0 100 0
 0.049949 sec 4 0 0 0 100 0

msgTimetable(1:4,1:6)

ans =

 4×6 timetable

 Time ID Extended Name Data Length Signals
 ____________ ___ ________ ____ ___________ ______ ____________

 0.019968 sec 100 false '' [1×4 uint8] 4 [0×0 struct]
 0.029964 sec 100 false '' [1×4 uint8] 4 [0×0 struct]
 0.039943 sec 100 false '' [1×4 uint8] 4 [0×0 struct]
 0.049949 sec 100 false '' [1×4 uint8] 4 [0×0 struct]

Input Arguments
msg — CAN message data
CAN message timetable, array, or structure

CAN message data, specified as a CAN message timetable, an array of CAN message objects, or a
CAN message structure from the CAN log block.

database — CAN database
database handle

CAN database, specified as a database handle.

Output Arguments
msgtimetable — CAN message timetable
timetable

CAN messages returned as a timetable.

11 Functions

11-58

See Also
Functions
canSignalTimetable | canDatabase | mdf

Introduced in R2017a

 canMessageTimetable

11-59

canSignalImport
Import CAN log file into decoded signal timetables

Syntax
sigtimetable = canSignalImport(file,vendor,database)
sigtimetable = canSignalImport(file,vendor,database,msgnames)

Description
sigtimetable = canSignalImport(file,vendor,database) imports a CAN message log file
from the specified vendor directly into decoded signal value timetables using the provided database.
The function returns a structure with a field for each unique message in the timetable. Each field
value is a timetable of all the signals in all instances of that message. Use this form of syntax to
convert an entire set of messages in a single function call.

sigtimetable = canSignalImport(file,vendor,database,msgnames) returns signal
timetables for only the messages specified by msgnames, which can specify one or more message
names. Use this syntax form to import signals from only a subset of messages.

Examples

Import Signals from Log for All Messages

Create signal timetables from all messages in a log file.

db = canDatabase('MyDatabase.dbc');
sigtimetable = canSignalImport('MsgLog.asc','Vector',db);

Import Signals from Log for Specified Messages

Create signal timetables from specified messages in a log file.

db = canDatabase('MyDatabase.dbc');
sigtimetable1 = canSignalImport('MsgLog.asc','Vector',db,'Message1');
sigtimetable2 = canSignalImport('MsgLog.asc','Vector',db,{'Message1','Message2'});

Input Arguments
file — CAN message log file
character vector | string

CAN message log file, specified as a character vector or string.
Example: 'MyDatabase.dbc'
Data Types: char | string

11 Functions

11-60

vendor — Vendor file format
'Kvaser' | 'Vector'

Vendor file format, specified as a character vector or string. The supported file formats are those
defined by Vector and Kvaser.
Example: 'Vector'
Data Types: char | string

database — CAN database
database handle

CAN database, specified as a database handle.

msgnames — Message names
char | string | cell

Message names, specified as a character vector, string, or array.
Example: 'message1'
Data Types: char | string | cell

Output Arguments
sigtimetable — CAN signals
structure

CAN signals, returned as a structure. The structure field names correspond to the messages of the
input, and each field value is a timetable of CAN signals.
Data Types: struct

See Also
Functions
canMessageImport | canSignalTimetable | canDatabase

Introduced in R2017a

 canSignalImport

11-61

canSignalTimetable
Create CAN signal timetable from CAN message timetable

Syntax
sigtimetable = canSignalTimetable(msgtimetable)
sigtimetable = canSignalTimetable(msgtimetable,msgnames)

Description
sigtimetable = canSignalTimetable(msgtimetable) converts a timetable of CAN message
information into individual timetables of signal values. The function returns a structure with a field
for each unique message in the timetable. Each field value is a timetable of all the signals in that
message. Use this syntax form to convert an entire set of messages in a single function call.

sigtimetable = canSignalTimetable(msgtimetable,msgnames) returns signal timetables
for only the messages specified by msgnames, which can specify one or more message names. Use
this syntax form to quickly convert only a subset of messages into signal timetables.

Examples

Create CAN Signal Timetables from All Messages

Create CAN signal timetables from all messages in a CAN message timetable.

sigTable = canSignalTimetable(msgTimetable);

Create CAN Signal Timetable from Specified Messages

Create CAN signal timetables from only specified messages in a CAN message timetable.

sigTable1 = canSignalTimetable(msgTimetable,'Message1');
sigTable2 = canSignalTimetable(msgTimetable,{'Message1','Message2'});

Input Arguments
msgtimetable — CAN message timetable
timetable

CAN messages, specified as a timetable.

msgnames — Message names
char | string | cell

Message names, specified as a character vector, string, or array.
Data Types: char | string | cell

11 Functions

11-62

Output Arguments
sigtimetable — CAN signals
structure

CAN signals, returned as a structure. The structure field names correspond to the messages of the
input, and each field value is a timetable of CAN signals.
Data Types: struct

See Also
Functions
canMessageTimetable | canSignalImport

Introduced in R2017a

 canSignalTimetable

11-63

canSupport
Generate technical support log

Syntax
canSupport

Description
canSupport generates diagnostic information for all installed CAN devices and saves the results to
the text file cansupport.txt in the current working folder. The MATLAB Editor opens the file for
you to view.

For online support, see the Product Resources section of the Vehicle Network Toolbox web page.

Examples

Generate Support Log

Generate a technical support log file and view it in the MATLAB editor.

canSupport

See Also
Functions
canChannelList

External Websites
Vehicle Network Toolbox

Introduced in R2009a

11 Functions

11-64

https://www.mathworks.com/products/vehicle-network.html
https://www.mathworks.com/products/vehicle-network.html

CAN.VendorInfo class
Package: CAN

Display available device vendor information

Note can.VendorInfo will be removed in a future release. Use canChannelList instead.

Syntax
info = canHWInfo
info.VendorInfo(index)

Description
info = canHWInfo creates an object with information of all available CAN hardware devices.

info.VendorInfo(index) displays available vendor information obtained from canHWInfo for the
device with the specified index.

Input Arguments
index — Device channel index
numeric value

Device channel index specified as a numeric value.

Properties
VendorName

Name of the device vendor.

VendorDriverDescription

Description of the device driver installed for this vendor.

VendorDriverVersion

Version of the device driver installed for this vendor.

ChannelInfo

Information on the device channels available for this vendor.

Examples

 CAN.VendorInfo class

11-65

Examine Kvaser Vendor Information

Get information on installed CAN devices.

info = canHWInfo

info =

CAN Devices Detected

Vendor	Device	Channel	Serial Number	Constructor
 Kvaser | Virtual 1 | 1 | 0 | canChannel('Kvaser', 'Virtual 1', 1)
 Kvaser | Virtual 1 | 2 | 0 | canChannel('Kvaser', 'Virtual 1', 2)
 Vector | Virtual 1 | 1 | 0 | canChannel('Vector', 'Virtual 1', 1)
 Vector | Virtual 1 | 2 | 0 | canChannel('Vector', 'Virtual 1', 2)

Use GET on the output of canHWInfo for more information.

Parse the objects VendorInfo class.

info.VendorInfo

ans =

 1x2 heterogeneous VendorInfo (VendorInfo, VendorInfo) array with properties:

 VendorName
 VendorDriverDescription
 VendorDriverVersion
 ChannelInfo

See Also
Functions
canHWInfo | CAN.ChannelInfo

11 Functions

11-66

cdfx
Access information contained in CDFX-file

Syntax
cdfxObj = cdfx(CDFXfile)

Description
cdfxObj = cdfx(CDFXfile) creates an asam.cdfx object and imports the calibration data from
the specified CDFX-file.

Examples

Access CDFX-File

Create an asam.cdfx object containing the calibration data from a CDFX-file.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx')

cdfxObj =

 CDFX with properties:

 Name: "AllCategories_VCD.cdfx"
 Path: "c:\DataFiles\AllCategories_VCD.cdfx"
 Version: "CDF20"

Input Arguments
CDFXfile — Calibration data format CDFX-file
char | string

Calibration data format CDFX-file, specified as a character vector or string. CDFXFile can specify the
file name in the current folder, or the full or relative path to the CDFX-file. For restrictions on the file
content, see “File Format Limitations” on page 9-5.
Example: 'ASAMCDFExample.cdfx'
Data Types: char | string

Output Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, returned as an asam.cdfx object. Use the object to access the calibration data.

 cdfx

11-67

See Also
Functions
instanceList | systemList | getValue | setValue | write

Introduced in R2019a

11 Functions

11-68

channelList
Information on available MDF groups and channels

Syntax
chans = channelList(mdfobj)
channelList(mdfObj,chanName)
channelList(mdfObj,chanName,'ExactMatch',true)

Description
chans = channelList(mdfobj) returns a table of information about channels and groups in the
specified MDF-file.

channelList(mdfObj,chanName) searches the MDF-file to generate a list of channels matching
the specified channel name. The search by default is case-insensitive and identifies partial matches. A
table is returned containing information about the matched channels and the containing channel
groups. If no matches are found, an empty table is returned.

channelList(mdfObj,chanName,'ExactMatch',true) searches the channels for an exact
match, including case sensitivity. This is useful if a channel name is a substring of other channel
names.

Examples

View Available MDF Channels

View all available MDF channels.

mdfObj = mdf('File01.mf4');
chans = channelList(mdfObj)

chans =

 4×9 table

 ChannelName ChannelGroupNumber ChannelGroupNumSamples
 ____________________________________ __________________ ______________________

 "Float_32_LE_Offset_64" 2 10000
 "Float_64_LE_Primary_Offset_0" 2 10000
 "Signed_Int16_LE_Offset_32" 1 10000
 "Unsigned_UInt32_LE_Primary_Offset_0" 1 10000

View Specific MDF Channels

Filter on channel names.

chans = channelList(mdfObj,'Float')

chans =

 channelList

11-69

 2×9 table

 ChannelName ChannelGroupNumber ChannelGroupNumSamples
 _____________________________ __________________ ______________________

 "Float_32_LE_Offset_64" 2 10000
 "Float_64_LE_Primary_Offset_0" 2 10000

chans = channelList(mdfObj,'Float','ExactMatch',true)

chans =

 0×9 empty table

Input Arguments
mdfObj — MDF-file
MDF-file object

MDF-file, specified as an MDF-file object.
Example: mdf('File01.mf4')

chanName — Name of channel
char vector | string

Name of channel, specified as a character vector or string. By default, case-insensitive and partial
matches are returned.
Example: 'Channel1'
Data Types: char | string

Output Arguments
chans — Information on available MDF channels
table

Information on available MDF channels, returned as a table. To access specific elements, you can
index into the table.

See Also
Functions
mdf

Introduced in R2018b

11 Functions

11-70

configBusSpeed
Set bit timing rate of CAN channel

Syntax
configBusSpeed(canch,busspeed)
configBusSpeed(canch,busspeed,SJW,TSeg1,TSeg2,numsamples)

configBusSpeed(canch,arbbusspeed,databusspeed)
configBusSpeed(canch,arbbusspeed,arbSJW,arbTSeg1,arbTSeg2,databusspeed,
dataSJW,dataTSeg1,dataTSeg2)
configBusSpeed(canch,clockfreq,arbBRP,arbSJW,arbTSeg1,arbTSeg2,dataBRP,
dataSJW,dataTSeg1,dataTSeg2)

Description
configBusSpeed(canch,busspeed) sets the speed of the CAN channel in a direct form that uses
baseline bit timing calculation factors.

• Unless you have specific timing requirements for your CAN connection, use the direct form of
configBusSpeed. Also note that you can set the bus speed only when the CAN channel is offline.
The channel must also have initialization access to the CAN device.

• Synchronize all nodes on the network for CAN to work successfully. However, over time, clocks on
different nodes will get out of sync, and must resynchronize. SJW specifies the maximum width (in
time) that you can add to TSeg1 (in a slower transmitter), or subtract from TSeg2 (in a faster
transmitter) to regain synchronization during the receipt of a CAN message.

configBusSpeed(canch,busspeed,SJW,TSeg1,TSeg2,numsamples) sets the speed of the CAN
channel canch to busspeed using the specified bit timing calculation factors to control the timing in
an advanced form.

Note Before you can start a channel to transmit or receive CAN FD messages, you must configure its
bus speed.

configBusSpeed(canch,arbbusspeed,databusspeed) sets the arbitration and data bus speeds
of canch using default bit timing calculation factors for CAN FD. This syntax supports NI and
MathWorks virtual devices.

configBusSpeed(canch,arbbusspeed,arbSJW,arbTSeg1,arbTSeg2,databusspeed,
dataSJW,dataTSeg1,dataTSeg2) sets the data and arbitration bus speeds of canch using the
specified bit timing calculation factors in an advanced form for CAN FD. This syntax supports Kvaser
and Vector devices.

configBusSpeed(canch,clockfreq,arbBRP,arbSJW,arbTSeg1,arbTSeg2,dataBRP,
dataSJW,dataTSeg1,dataTSeg2) sets the data and arbitration bus speeds of canch using the
specified bit timing calculation factors in an advanced form for CAN FD. This syntax supports PEAK-
System devices.

 configBusSpeed

11-71

Examples

Configure Bus Speed

Configure the bus speed using baseline bit timing calculation.

Configure for CAN.

canch = canChannel('Vector','CANCaseXL 1',1);
configBusSpeed(canch,250000)

Configure CAN FD on MathWorks virtual channel.
canch = canChannel('MathWorks','Virtual 1',1,'ProtocolMode','CAN FD');
configBusSpeed(canch,1000000,2000000)

Configure CAN FD on National Instruments device.

canch = canChannel('NI','CAN1','ProtocolMode','CAN FD');
configBusSpeed(canch,1000000,2000000)

Specify Bit Timing Parameters

Configure the bus speed, specifying the bit timing parameters.

Configure CAN timing on a Kvaser device.

canch = canChannel('Kvaser','USBcan Professional 1',1);
configBusSpeed(canch,500000,1,4,3,1)

Configure CAN FD on a Kvaser device.

canch = canChannel('Kvaser','USBcan Pro 1',1,'ProtocolMode','CAN FD');
 configBusSpeed(canch,1e6,2,6,3,2e6,2,6,3)

Configure CAN FD on a Vector device.

canch = canChannel('Vector','VN1610 1',1,'ProtocolMode','CAN FD');
configBusSpeed(canch,1e6,2,6,3,2e6,2,6,3)

Configure CAN FD on a PEAK-System device.
canch = canChannel('PEAK-System','PCAN_USBBUS1','ProtocolMode','CAN FD');
configBusSpeed(canch,20,5,1,2,1,2,1,3,1)

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object.

busspeed — Bit rate for channel
double

Bit rate for channel, specified as a double. Provide the speed of the network in bits per second.

11 Functions

11-72

Example: 250000
Data Types: double

SJW — Synchronization jump width
double

Synchronization jump width, specified as a double. Define the length of a bit on the network.
Data Types: double

TSeg1 — Time segment 1
double

Time segment 1, specified as a double, which defines the section before a bit is sampled on the
network.
Data Types: double

TSeg2 — Time segment 2
double

Time segment 2, specified as a double, which defines the section after a bit is sampled on a network.
Data Types: double

numsamples — Number of samples for bit state
double

Number of samples for bit state, specified as a double. Specify the number of samples used for
determining the bit state of a network.
Data Types: double

arbbusspeed — Arbitration bit rate for channel
double

Arbitration bit rate for channel, specified as a double. Provide the speed of the network in bits per
second.
Example: 250000
Data Types: double

arbSJW — Arbitration synchronization jump width
double

Arbitration synchronization jump width, specified as a double. Define the length of a bit on the
network.
Data Types: double

arbTSeg1 — Arbitration time segment 1
double

Arbitration time segment 1, specified as a double, which defines the section before a bit is sampled
on the network.
Data Types: double

 configBusSpeed

11-73

arbTSeg2 — Arbitration time segment 2
double

Arbitration time segment 2, specified as a double, which defines the section after a bit is sampled on
a network.
Data Types: double

databusspeed — Data bit rate for channel
double

Data bit rate for channel, specified as a double. Provide the speed of the network in bits per second.
Example: 250000
Data Types: double

dataSJW — Data synchronization jump width
double

Data synchronization jump width, specified as a double. Define the length of a bit on the network.
Data Types: double

dataTSeg1 — Data time segment 1
double

Data time segment 1, specified as a double, which defines the section before a bit is sampled on the
network.
Data Types: double

dataTSeg2 — Data time segment 2
double

Data time segment 2, specified as a double, which defines the section after a bit is sampled on a
network.
Data Types: double

clockfreq — Clock frequency
double

Clock frequency for channel in MHz, specified as a double.
Example: 250000
Data Types: double

arbBRP — Arbitration clock prescalar for time quantum
double

Arbitration clock prescalar for time quantum, specified as a double.
Example: 5
Data Types: double

dataBRP — Data clock prescalar for time quantum
double

11 Functions

11-74

Data clock prescalar for time quantum, specified as a double.
Example: 2
Data Types: double

See Also
Functions
canChannel | canFDChannel | start

Properties
can.Channel Properties

External Websites
Bit Timing

Introduced in R2009a

 configBusSpeed

11-75

https://en.wikipedia.org/wiki/CAN_bus#Bit_timing

configBusSpeed
Package: j1939

Configure bit timing of J1939 channel

Syntax
configBusSpeed(chan,busspeed)
configBusSpeed(chan,busspeed,SJW,TSeg1,TSeg2,numsamples)

Description
configBusSpeed(chan,busspeed) sets the speed of the J1939 channel chan to busspeed in a
direct form that uses default bit timing calculation factors.

Note You can set bit timing only when the channel is offline and has initialization access to the
device.

configBusSpeed(chan,busspeed,SJW,TSeg1,TSeg2,numsamples) sets the speed of the
channel using specified bit timing calculation factors.

Note Unless you have specific timing requirements provided for your network, you should use the
direct form of the function.

Examples

Set Bus Speed for Channel Directly

Use the direct form of syntax to configure a J1939 channel bus speed.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
configBusSpeed(chan,250000)

Set Bus Speed for Channel with Calculation Factors

Use the advanced form of syntax to configure a J1939 channel bus speed with specific calculation
factors.

11 Functions

11-76

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
configBusSpeed(chan,500000,1,4,3,1)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

busspeed — Bit rate for channel
double

Bit rate for channel, specified as a double. Provide the speed of the network in bits per second.
Example: 250000
Data Types: double

SJW — Synchronization jump width
double

Synchronization Jump Width, specified as a double. Define the length of a bit on a network.
Data Types: double

TSeg1 — Time segment 1
double

Time segment 1, specified as a double, which defines the section before a bit is sampled on a
network.
Data Types: double

TSeg2 — Time segment 2
double

Time segment 2, specified as a double, which defines the section after a bit is sampled on a network.
Data Types: double

numsamples — Number of samples for bit state
double

Number of samples for bit state, specified as a double. Specify the number of samples used for
determining the bit state of a network.
Data Types: double

See Also
Functions
j1939Channel | start | stop | transmit

 configBusSpeed

11-77

Introduced in R2015b

11 Functions

11-78

connect
Connect XCP channel to server module

Syntax
connect(xcpch)

Description
connect(xcpch) creates an active connection between the XCP channel and the server module,
enabling active messaging between the channel and the server.

Examples

Connect to a Server Module

Create an XCP channel connected to a Vector CAN device on a virtual channel and connect it.

Link an A2L file to and create an XCP channel with it.

a2lfile = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the channel and verify that it is connected.

connect (xcpch)
isConnected(xcpch)

ans =

 1

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

See Also
Functions
xcpA2L | xcpChannel | readSingleValue | writeSingleValue

Introduced in R2013a

 connect

11-79

createMeasurementList
Create measurement list for XCP channel

Syntax
createMeasurementList(xcpch,resource,eventName,measurementName)
createMeasurementList(xcpch,resource,eventName,{measurementName,
measurementName,measurementName})

Description
createMeasurementList(xcpch,resource,eventName,measurementName) creates a data
stimulation list for the XCP channel with the specified event and measurement.

createMeasurementList(xcpch,resource,eventName,{measurementName,
measurementName,measurementName}) creates a data stimulation list for the XCP channel with
the specified event and list of measurements.

Examples

Create a DAQ Measurement List

Create an XCP channel connected to a Vector CAN device on a virtual channel and set up a DAQ
measurement list.

a2lfile = xcp.A2L('XCPSIM.a2l')
xcpch = xcp.Channel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1)

xcpch =

 Channel with properties:

 ServerName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyDLL: []

Connect the channel to the server module.

connect(xcpch)

Set up a data acquisition measurement list with the '10 ms' event and 'Triangle' measurement.

createMeasurementList(xcpch,'DAQ','10 ms','Triangle');

11 Functions

11-80

Create a Data Stimulation List

Create an XCP channel connected to a Vector CAN device on a virtual channel and set up a STIM
measurement list.

a2l = xcp.A2L('XCPSIM.a2l')
xcpch = xcp.Channel(a2lfile,'CAN','Vector','Virtual 1',1)

xcpch =
 Channel with properties:

 ServerName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyDLL: []

Connect the channel to the server module.

connect(xcpch)

Set up a data stimulation measurement list with the '100ms' event and 'PWM' and 'ShiftByte'
measurements.

createMeasurementList(xcpch,'STIM','100ms',{'PWM','ShiftByte'});

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

resource — Measurements list type
'DAQ' | 'STIM'

Measurement list type, specified as 'DAQ' or 'STIM'.
Example: 'DAQ'
Data Types: char | string

eventName — Name of event
character vector | string

Name of event, specified as a character vector or string. The event is used to trigger the specified
measurement list. The list of available events depends on your A2L file.
Data Types: char | string

measurementName — Name of single XCP measurement
character vector | string | array

Name of a single XCP measurement, specified as a character vector or string; or a set of
measurements, specified as a cell array of character vectors or array of strings. Make sure
measurementName matches the corresponding measurement names defined in your A2L file.

 createMeasurementList

11-81

See Also
viewMeasurementLists | startMeasurement | freeMeasurementLists

Introduced in R2013a

11 Functions

11-82

discard
Discard all messages from CAN channel

Syntax
discard(canch)

Description
discard(canch) discards messages that are available to receive on the channel canch.

Examples

Discard Messages Received by a CAN Channel

Set up a CAN channel to receive messages, then discard the messages.

Create a CAN channel to receive messages and start the channel.

rxCh = canChannel('Vector','CANcaseXL 1',1);
start (rxCh)

Discard all messages in this channel.

discard(rxCh);

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, that you want to discard the messages from.
Example: canChannel('NI','CAN1')

See Also
Functions
canChannel

Introduced in R2012a

 discard

11-83

discard
Package: j1939

Discard available parameter groups on J1939 channel

Syntax
discard(chan)

Description
discard(chan) deletes all parameter groups available on the J1939 channel chan. The channel also
deactivates when it is cleared from memory.

Examples

Discard Parameter Groups on Channel

Delete all the parameter groups on a J1939 channel.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
start(chan)

discard(chan)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

See Also
Functions
j1939Channel | start

Introduced in R2015b

11 Functions

11-84

disconnect
Disconnect from server module

Syntax
disconnect(xcpch)

Description
disconnect(xcpch) disconnects the specified XCP channel from the server module. Disconnecting
the channel stops active messaging between the channel and the server module.

Examples

Disconnect an Active XCP Connection

Create an XCP channel using a CAN module, connect the channel and disconnect it from the specified
server module.

Link an A2L file

a2l = xcpA2L('XCPSIM.a2l')

Create an XCP channel using a Vector CAN module virtual channel. Check to see if channel is
connected.

xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the channel and validate its connection.

connect(xcpch)
isConnected(xcpch)

ans =

 1

Disconnect the channel and check if connection is active.

disconnect(xcpch)
isConnected(xcpch)

ans =

 0

Input Arguments
xcpch — XCP channel
XCP channel object

 disconnect

11-85

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

See Also
xcpA2L | xcpChannel | connect | isConnected

Introduced in R2013a

11 Functions

11-86

extractAll
Select all instances of CAN message from message array

Syntax
extracted = extractAll(message,messagename)
extracted = extractAll(message,id,extended)
[extracted,remainder] = extractAll(___)

Description
extracted = extractAll(message,messagename) parses the given array message, and
returns all instances of messages matching the specified message name.

extracted = extractAll(message,id,extended) parses the given array message, and
returns all instances of messages matching the specified ID value and type.

[extracted,remainder] = extractAll(___) assigns to extracted those messages that
match the search, and returns to remainder those that do not match.

Examples

Extract Messages by Name and ID

Extract messages by matching name and IDs.

Extract messages by name.
msgOut = extractAll(msgs,'DoorControlMsg');

Extract all messages with IDs 200 and 5000. Note that 5000 requires an extended style ID.
msgOut = extractAll(msgs,[200 5000],[false true]);

Extract messages and also return the remainder.
[msgOut,remainder] = extractAll(msgs,{'DoorControlMsg','WindowControlMsg'});

Input Arguments
message — CAN messages to parse
array of CAN message objects

CAN messages to parse, specified as an array of CAN message objects. This is the collection from
which you extract messages by specific names or IDs.

messagename — Name of message to extract
char vector | string | cell

Name of message to extract, specified as a character vector, string, or array that supports these
types.

 extractAll

11-87

Example: 'DoorControlMsg'
Data Types: char | string | cell

id — ID of message to extract
numeric value or vector

ID of message to extract, specified as a numeric value or vector. Using this argument also requires
that you specify an extended argument.
Example: [200 400]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

extended — Indication of extended ID type
true | false

Indication of extended ID type, specified as a logical true or false. Use a value true if the ID type
is extended, or false if standard. This argument is required if you specify a message ID.

If the message ID is a numeric vector, use a logical vector of the same length for extended.For
example, if you specify id and extended as [250 5000],[false true], then extractAll
returns all instances of CAN messages 250 and 5000 found within in the message array.
Example: true
Data Types: logical

Output Arguments
extracted — Extracted CAN messages
array of CAN messages

Extracted CAN messages, returned as an array of CAN message objects. These are the messages
whose name or ID matches the specified value.

remainder — Unmatched CAN messages
array of CAN messages

Unmatched CAN messages, returned as an array of CAN message objects. These are the messages in
the original set whose name or ID does not match the specified value.

See Also
Functions
extractRecent | extractTime

Introduced in R2009a

11 Functions

11-88

extractAll
Package: j1939

Occurrences of specified J1939 parameter groups

Syntax
extractedPGs = extractAll(pgrp,pgname)
[extractedPGs,remainderPGs] = extractAll(pgrp,pgname)

Description
extractedPGs = extractAll(pgrp,pgname) returns all parameter groups whose name occurs
in pgname.

[extractedPGs,remainderPGs] = extractAll(pgrp,pgname) also returns a parameter group
array, remainder, containing all groups from the original array not matching the specified names in
pgname.

Examples

Extract Parameter Groups

Extracts all the parameter groups with a name of 'PG1' or 'PG2'.

extractedPGs = extractAll(pgrp,{'PG1' 'PG2'})

Extract Parameter Groups and Remainder

Extract all parameter groups with a name of 'PG1' or 'PG2', and also return unmatched parameter
groups to a different array.

[extractedPGs,remainderPGs] = extractAll(parameterGroups, {'PG1' 'PG2'})

Input Arguments
pgrp — J1939 parameter group
array of ParameterGroup objects

J1939 parameter groups, specified as an array of ParameterGroup objects. Use
thej1939ParameterGroup or receive function to create ParameterGroup objects.

pgname — Names of J1939 parameter groups to extract
char vector | string | cell array of char vectors

Names of J1939 parameter groups to extract, specified as a character vector, string, or array of these.
Example: 'PG1'

 extractAll

11-89

Data Types: char | string | cell

Output Arguments
extractedPGs — Extracted parameter groups
array of ParameterGroup objects

Extracted parameter groups, returned as an array of ParameterGroup objects. These parameter
groups have names matching any of those specified in the pgname argument.

remainderPGs — Remainder of parameter groups
array of ParameterGroup objects

Remainder of parameter groups, returned as an array of ParameterGroup objects. These are all the
parameter groups with names not matching any of those specified in the pgname argument.

See Also
Functions
j1939ParameterGroup | extractRecent | extractTime

Introduced in R2015b

11 Functions

11-90

extractRecent
Select most recent CAN message from array of messages

Syntax
extracted = extractRecent(message)
extracted = extractRecent(message,messagename)
extracted = extractRecent(message,id,extended)

Description
extracted = extractRecent(message) parses the given array message and returns the most
recent instance of each unique CAN message found in the array.

extracted = extractRecent(message,messagename) parses the specified array of messages
and returns the most recent instance matching the specified message name.

extracted = extractRecent(message,id,extended) parses the given array message and
returns the most recent instance of the message matching the specified ID value and type.

Examples

Extract Recent Messages

Extract most recent message for each name.
msgOut = extractRecent(msgs);

Extract recent messages for specific names.
msgOut1 = extractRecent(msgs,'DoorControlMsg');
msgOut2 = extractRecent(msgs,{'DoorControlMsg' 'WindowControlMsg'});

Extract recent messages with IDs 200 and 5000. Note that 5000 requires an extended style ID.
msgOut = extractRecent(msgs,[200 5000],[false true]);

Input Arguments
message — CAN messages to parse
array of CAN message objects

CAN messages to parse, specified as an array of CAN message objects. This is the collection from
which you extract recent messages.

messagename — Name of message to extract
char vector | string | cell

Name of message to extract, specified as a character vector, string, or array that supports these
types.
Example: 'DoorControlMsg'

 extractRecent

11-91

Data Types: char | string | cell

id — ID of message to extract
numeric value or vector

ID of message to extract, specified as a numeric value or vector. Using this argument also requires
that you specify an extended argument.
Example: [200 400]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

extended — Indication of extended ID type
true | false

Indication of extended ID type, specified as a logical true or false. Use a value true if the ID type
is extended, or false if standard. This argument is required if you specify a message ID.

If the message ID is a numeric vector, use a logical vector of the same length for extended.For
example, if you specify id and extended as [250 5000],[false true], then extractAll
returns all instances of CAN messages 250 and 5000 found within in the message array.
Example: true
Data Types: logical

Output Arguments
extracted — Extracted CAN messages
array of CAN messages

Extracted CAN messages, returned as an array of CAN message objects. These are the most recent
messages matching the search criteria.

See Also
Functions
extractAll | extractTime

Introduced in R2009a

11 Functions

11-92

extractRecent
Package: j1939

Occurrences of most recent J1939 parameter groups

Syntax
extractedPGs = extractRecent(pgrp)
extractedPGs = extractRecent(pgrp,pgname)

Description
extractedPGs = extractRecent(pgrp) returns the most recent instance of each unique
parameter group found in the array pgrp, based on the parameter group timestamps.

extractedPGs = extractRecent(pgrp,pgname) returns the most recent instance of parameter
groups whose names match any of those specified in pgname.

Examples

Extract Most Recent Parameter Groups

Extract the most recent of each parameter group.

extractedPGs = extractRecent(pgrp)

Extract Most Recent Parameter Groups for Specific Names

Extract the most recent of each parameter group named 'PG1' or 'PG2'.

extractedPGs = extractRecent(pgrp,{'PG1' 'PG2'})

Input Arguments
pgrp — J1939 parameter group
array of ParameterGroup objects

J1939 parameter groups, specified as an array of ParameterGroup objects. Use
thej1939ParameterGroup or receive function to create ParameterGroup objects.

pgname — Names of J1939 parameter groups to extract
char vector | string | array

Names of J1939 parameter groups to extract, specified as a character vector, string, or array of these.
Example: 'PG1'
Data Types: char | string | cell

 extractRecent

11-93

Output Arguments
extractedPGs — Extracted parameter groups
array of ParameterGroup objects

Extracted parameter groups, returned as an array of ParameterGroup objects.

See Also
Functions
j1939ParameterGroup | extractAll | extractTime

Introduced in R2015b

11 Functions

11-94

extractTime
Select CAN messages occurring within specified time range

Syntax
extracted = extractTime(message,starttime,endtime)

Description
extracted = extractTime(message,starttime,endtime) parses the array message and
returns all messages with a timestamp value within the specified starttime and endtime, inclusive.

Examples

Extract Messages Within Time Range

Extract messages in first 10 seconds of channel being on.

msgRange = extractTime(msgs,0,10);

Input Arguments
message — CAN messages to parse
array of CAN message objects

CAN messages to parse, specified as an array of CAN message objects. This is the collection from
which you extract recent messages.

starttime,endtime — Time range in seconds
numeric values

Time range in seconds, specified as numeric values. The function returns messages with timestamps
that fall within the range defined by starttime and endtime, inclusive.

Specify the time range in increasing order from starttime to endtime. If you must specify the
largest available time, set endtime to Inf. The earliest time you can specify for starttime is 0.
Example: 0,10
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
extracted — Extracted CAN messages
array of CAN messages

Extracted CAN messages, returned as an array of CAN message objects. These are the messages
within the specified time range.

 extractTime

11-95

See Also
Functions
extractAll | extractRecent

Introduced in R2009a

11 Functions

11-96

extractTime
Package: j1939

Occurrences of J1939 parameter groups within time range

Syntax
extractedPGs = extractTime(pgrp,starttime,endtime)

Description
extractedPGs = extractTime(pgrp,starttime,endtime) returns the parameter groups
found in the array pgrp, with timestamps between the specified starttime and endtime, inclusive.

Examples

Extract Parameter Groups Within Specified Time Range

Extract the parameter groups according to start and stop timestamps.

Extract parameter groups between 5 and 10.5 seconds.

extractedPGs = extractTime(pgrp,5,10.5)

Extract all parameter groups within the first minute.

extractedPGs = extractTime(pgrp,0,60)

Extract all parameter groups after 150 seconds.

extractedPGs = extractTime(pgrp,150,Inf)

Input Arguments
pgrp — J1939 parameter group
array of ParameterGroup objects

J1939 parameter groups, specified as an array of ParameterGroup objects. Use
thej1939ParameterGroup or receive function to create ParameterGroup objects.

starttime,endtime — Start time and end time
numeric value

Start time and end time, specified as numeric values. These arguments define the range of time from
which to extract parameter groups, inclusively. For the earliest possible starttime use 0, for the
latest possible endtime use Inf. The endtime value must be greater than the starttime value.
Data Types: double | single

 extractTime

11-97

Output Arguments
extractedPGs — Extracted parameter groups
array of ParameterGroup objects

Extracted parameter groups, returned as an array of ParameterGroup objects. These parameter
groups fall within the specified time range, inclusively.

See Also
Functions
j1939ParameterGroup | extractAll | extractRecent

Introduced in R2015b

11 Functions

11-98

filterAllowAll
Allow all CAN messages of specified identifier type

Syntax
filterAllowAll(canch, type)

Description
filterAllowAll(canch, type) opens the filter on the specified CAN channel to allow all
messages matching the specified identifier type to pass the acceptance filter.

Examples

Allow Standard and Extended ID Messages

Allow all standard and extended ID messages to pass the filter.

canch = canChannel('Vector','CANCaseXL 1',1);
filterAllowAll(canch,'Standard')
filterAllowAll(canch,'Extended')

canch.FilterHistory

'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, on which to filter.
Example: canch = canChannel('NI','CAN1')

type — Identifier type
'standard' | 'extended'

Identifier type by which to filter, specified as a character vector or string. CAN messages identifier
types are 'Standard' and 'Extended'.
Example: 'Standard'
Data Types: char | string

See Also
Functions
canChannel | canMessage | filterAllowOnly | filterBlockAll

 filterAllowAll

11-99

Introduced in R2011b

11 Functions

11-100

filterAllowAll
Package: j1939

Open parameter group filters on J1939 channel

Syntax
filterAllowAll(chan)

Description
filterAllowAll(chan) opens all parameter group filters on the specified channel, making all
parameter groups receivable.

Examples

Allow All Parameter Groups to Be Received

Open the filter to allow all J1939 parameter groups on the channel.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
filterAllowAll(chan)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use the j1939Channel function to create and define
the channel.

See Also
Functions
j1939Channel | filterAllowOnly | filterBlockOnly

Introduced in R2015b

 filterAllowAll

11-101

filterAllowOnly
Configure CAN message filter to allow only specified messages

Syntax
filterAllowOnly(canch,name)
filterAllowOnly(canch,IDs,type)

Description
filterAllowOnly(canch,name) configures the filter on the channel canch to pass only messages
with the specified name.

Set the channel object Database property to attach a database to allow filtering by message names.

filterAllowOnly(canch,IDs,type) configures the filter on the channel canch to pass only
messages of the specified identifier type and values.

Examples

Filter by Message Name

Filter a database defined message with the name 'EngineMsg'

canch = canChannel('Vector','CANCaseXL 1',1);
canch.Database = canDatabase('candatabase.dbc');
filterAllowOnly(canch,'EngineMsg')

Filter by Message IDs

Filter messages by identifiers.

canch = canChannel('Vector','CANCaseXL 1',1);
filterAllowOnly(canch,[602 612],'Standard')

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, on which to filter.
Example: canch = canChannel('NI','CAN1')

name — Name of CAN messages
char vector | string

11 Functions

11-102

Name of CAN messages that you want to allow, specified as a character vector, string, or supporting
array of these types.
Example: 'EngineMsg'
Data Types: char | string | cell

IDs — CAN message IDs
numeric value

CAN message IDs that you want to allow, specified as a numeric value or vector.

Specify IDs as a decimal value. To convert a hexadecimal to a decimal value, use the hex2dec
function.
Example: 600, [600,610], [600:800], [200:400,600:800]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

type — Identifier type
'standard' | 'extended'

Identifier type by which to filter, specified as a character vector or string. CAN messages identifier
types are 'Standard' and 'Extended'.
Example: 'Standard'
Data Types: char | string

See Also
Functions
canChannel | canDatabase | filterAllowAll | filterBlockAll | hex2dec

Introduced in R2011b

 filterAllowOnly

11-103

filterAllowOnly
Package: j1939

Allow only specified parameter groups to pass J1939 channel filter

Syntax
filterAllowOnly(chan,pgname)

Description
filterAllowOnly(chan,pgname) configures the filter on the channel chan to pass only the
parameter groups specified by pgname.

Examples

Allow Only Some Parameter Groups to Be Received

Configure the channel filter to allow only specified J1939 parameter groups to be received on the
channel.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
filterAllowOnly(chan,{'PG1' 'PG2'})

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use the j1939Channel function to create and define
the channel.

pgname — Allowed J1939 parameter groups
char vector | string | array

Allowed J1939 parameter groups, specified as a character vector, string, or array of these.
Example: 'PG1'
Data Types: char | string | cell

See Also
Functions
j1939Channel | filterAllowAll | filterBlockOnly

Introduced in R2015b

11 Functions

11-104

filterBlockAll
Configure filter to block CAN messages with specified identifier type

Syntax
filterBlockAll(canch,type)

Description
filterBlockAll(canch,type) configures the CAN message filter to block all messages matching
the specified identifier type.

Examples

Block All Standard ID Messages

Block all standard ID message types.

canch = canChannel('Vector','CANCaseXL 1',1)
filterBlockAll(canch,'Standard')

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, on which to filter.
Example: canch = canChannel('NI','CAN1')

type — Identifier type
'standard' | 'extended'

Identifier type by which to filter, specified as a character vector or string. CAN messages identifier
types are 'Standard' and 'Extended'.
Example: 'Standard'
Data Types: char | string

See Also
Functions
canChannel | filterAllowAll | filterAllowOnly

Introduced in R2011b

 filterBlockAll

11-105

filterBlockOnly
Package: j1939

Block only specified parameter groups on J1939 channel filter

Syntax
filterBlockOnly(chan,pgname)

Description
filterBlockOnly(chan,pgname) configures the filter on the channel chan to block only the
parameter groups specified by pgname.

Examples

Block Only Some Parameter Groups on Channel

Configure the channel filter to block only specified J1939 parameter groups on the channel.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
filterBlockOnly(chan,{'PG1' 'PG2'})

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use the j1939Channel function to create and define
the channel.

pgname — Blocked J1939 parameter groups
char vector | string | array

Blocked J1939 parameter groups, specified as a character vector, string, or array of these.
Example: 'PG1'
Data Types: char | string | cell

See Also
Functions
j1939Channel | filterAllowAll | filterAllowOnly

Introduced in R2015b

11 Functions

11-106

freeMeasurementLists
Remove all measurement lists from XCP channel

Syntax
freeMeasurementLists(xcpch)

Description
freeMeasurementLists(xcpch) removes all configured measurement lists from the specified XCP
channel.

Examples

Free DAQ Lists

Create two data acquisition lists and remove them.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1', 1);

Connect the channel to the server module.

connect(xcpch)

Set up a data acquisition measurement list with the '10 ms' event and 'PMW' measurement.
createMeasurementList(xcpch, 'DAQ', '10 ms', {'BitSlice0','PWMFiltered','Triangle'})

Create another measurement list with the '100ms' event and 'PWMFiltered', and 'Triangle'
measurements.

createMeasurementList(xcpch, 'DAQ', '100ms', {'PWMFiltered','Triangle'})

View details of the measurement lists.

viewMeasurementLists(xcpch)

DAQ List #1 using the "10 ms" event @ 0.010000 seconds and the following measurements:
 PWM

DAQ List #2 using the "100ms" event @ 0.100000 seconds and the following measurements:
 PWMFiltered
 Triangle

Free the measurement lists.

 freeMeasurementLists

11-107

freeMeasurementLists(xcpch)

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

See Also
xcpA2L | xcpChannel | createMeasurementList | viewMeasurementLists

Introduced in R2013a

11 Functions

11-108

getCharacteristicInfo
Get information about specific characteristic from A2L file

Syntax
info = getCharacteristicInfo(a2lFile,characteristic)

Description
info = getCharacteristicInfo(a2lFile,characteristic) returns information about the
specified characteristic from the specified A2L file, and stores it in the xcp.Characteristic object,
info.

Examples

Get XCP Characteristic Information

Create a handle to parse an A2L file and get information about the curve1_8_uc characteristic.

a2lfile = xcpA2L('C:\XCPSIM.a2l');
info = getCharacteristicInfo(a2lfile,'curve1_8_uc')

info =

 Characteristic with properties:

 CharacteristicType: 'VAL_BLK'
 Deposit: [1×1 xcp.RecordLayout]
 AxisConversion: {}
 Name: 'curve1_8_uc'
 LongIdentifier: '8 BYTE shared axis Curve2'
 ECUAddress: 1131912
 ECUAddressExtension: 0
 Conversion: [1×1 xcp.CompuMethodRational]
 Dimension: [8 1 1]
 LowerLimit: 0
 UpperLimit: 255
 BitMask: []

Input Arguments
a2lFile — A2L file
xcp.A2L object

A2L file, specified as an xcp.A2L object, used in this connection. You can create an A2L file object
using xcpA2L.

characteristic — XCP channel characteristic name
char vector | string

XCP channel characteristic name, specified as a character vector or string.
Example: 'curve1_8_uc'
Data Types: char | string

 getCharacteristicInfo

11-109

Output Arguments
info — XCP characteristic information
xcp.Characteristic object

XCP characteristic information, returned as an xcp.Characteristic object, containing characteristic
details such as type, identifier, and conversion.

See Also
xcpA2L | getEventInfo | getMeasurementInfo

Topics
“Get Started with A2L-Files” on page 14-231
“XCP Database and Communication Workflow” on page 5-2

Introduced in R2018a

11 Functions

11-110

getEventInfo
Get event information about specific event from A2L file

Syntax
info = getEventInfo(a2lFile,eventName)

Description
info = getEventInfo(a2lFile,eventName) returns information about the specified event from
the specified A2L file, and stores it in the xcp.Event object, info.

Examples

Get XCP Event Information

Create a handle to parse an A2L file and get information about the '10 ms' event.

a2lfile = xcpA2L('C:\XCPSIM.a2l')
info = getEventInfo(a2lfile,'10 ms')

info =
 Event with properties:
 Name: '10 ms'
 Direction: 'DAQ_STIM'
 MaxDAQList: 255
 ChannelNumber: 1
 ChannelTimeCycle: 10
 ChannelTimeUnit: 6
 ChannelPriority: 0
 ChannelTimeCycleInSeconds: 0.0100

Input Arguments
a2lFile — A2L file
xcp.A2L object

A2L file, specified as an xcp.A2L object, used in this connection. You can create an A2L file object
using xcpA2L.

eventName — XCP event name
character vector | string

XCP event name, specified as a character vector or string. Make sure eventName matches the
corresponding event name defined in your A2L file.

 getEventInfo

11-111

Output Arguments
info — XCP event information
xcp.Event object

XCP event information, returned as xcp.Event object, containing event details such as timing and
priority.

See Also
Functions
xcpA2L | getCharacteristicInfo | getMeasurementInfo

Topics
“Get Started with A2L-Files” on page 14-231
“XCP Database and Communication Workflow” on page 5-2

Introduced in R2013a

11 Functions

11-112

getMeasurementInfo
Get information about specific measurement from A2L file

Syntax
info = getMeasurementInfo(a2lFile,measurementName)

Description
info = getMeasurementInfo(a2lFile,measurementName) returns information about the
specified measurement from the specified A2L file, and stores it in the xcp.Measurement object,
info.

Examples

Get XCP Measurement Information

Create a handle to parse an A2L file and get information about the channel1 measurement.

a2lfile = xcpA2L('C:\XCPSIM.a2l')
info = getMeasurementInfo(a2lfile,'channel1')

info = Measurement with properties:

 Resolution: 0
 Accuracy: 0
 LocDataType: 'FLOAT32_IEEE'
 Name: 'channel1'
 LongIdentifier: 'FLOAT demo signal (sine wave)'
 ECUAddress: 1155080
 ECUAddressExtension: 0
 Conversion: [1×1 xcp.CompuMethodRational]
 Dimension: 1
 LowerLimit: -1.0000e+12
 UpperLimit: 1.0000e+12
 BitMask: []

Input Arguments
a2lFile — A2L file
xcp.A2L object

A2L file, specified as an xcp.A2L object, used in this connection. You can create an A2L file object
using xcpA2L.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

 getMeasurementInfo

11-113

Output Arguments
info — XCP measurement information
xcp.Measurement object

XCP measurement information, returned as an xcp.Measurement object, containing measurement
details such as memory address, identifier, and limits.

See Also
xcpA2L | getCharacteristicInfo | getEventInfo

Topics
“Get Started with A2L-Files” on page 14-231
“XCP Database and Communication Workflow” on page 5-2

Introduced in R2013a

11 Functions

11-114

getValue
Retrieve instance value from CDFX object

Syntax
iVal = getValue(cdfxObj,instName)
iVal = getValue(cdfxObj,instName,sysName)

Description
iVal = getValue(cdfxObj,instName) returns the value of the unique instance whose
ShortName is specified by instName. If multiple instances share the same ShortName, the function
returns an error.

iVal = getValue(cdfxObj,instName,sysName) returns the value of the instance whose
ShortName is specified by instName and is contained in the system specified by sysName.

Examples

Retrieve Value of Instance

Create an asam.cdfx object and read the value of its VALUE_NUMERIC instance.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
iVal = getValue(cdfxObj,'VALUE_NUMERIC')

iVal =

 12.2400

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

instName — Instance name
char | string

Instance name, specified as a character vector or string.
Example: 'NUMERIC_VALUE'
Data Types: char | string

sysName — Parent system name
char | string

 getValue

11-115

Parent system name, specified as a character vector or string.
Example: 'System2'
Data Types: char | string

Output Arguments
iVal — Instance value
instance type

Instance value, returned as the instance type.

See Also
Functions
cdfx | instanceList | systemList | setValue | write

Introduced in R2019a

11 Functions

11-116

hasdata
Package: matlab.io.datastore

Determine if data is available to read from MDF datastore

Syntax
tf = hasdata(mdfds)

Description
tf = hasdata(mdfds) returns logical 1 (true) if there is data available to read from the MDF
datastore specified by mdfds. Otherwise, it returns logical 0 (false).

Examples

Check MDF Datastore for Readable Data

Use hasdata in a loop to control read iterations.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
while hasdata(mdfds)
 m = read(mdfds);
end

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments
tf — Indicator of data to read
1 | 0

Indicator of data to read, returned as a logical 1 (true) or 0 (false).

See Also
Functions
mdfDatastore | read | readall | reset

Introduced in R2017b

 hasdata

11-117

instanceList
Parameter instances in the CDFX object

Syntax
iList = instanceList(cdfxObj)
iList = instanceList(cdfxObj,instName)
iList = instanceList(cdfxObj,instName,sysName)

Description
iList = instanceList(cdfxObj) returns a table of every parameter instance in the CDFX
object.

iList = instanceList(cdfxObj,instName) returns a table of every parameter instance in the
CDFX object whose ShortName matches instName.

iList = instanceList(cdfxObj,instName,sysName) returns a table of every parameter
instance in the CDFX object whose ShortName matches instName and whose parent System
matches sysName.

Examples

View CDFX Object Instances

Create an asam.cdfx object and view its parameter instances.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
iList = instanceList(cdfxObj);
iList(1:4,1:4)

ans =

 4×4 table

 ShortName System Category Value
 _______________ _________ _________ _____________________________________

 "VALUE_NUMERIC" "System1" "VALUE" [12.2400]
 "VALUE_TEXT" "System1" "VALUE" ["Text_Value"]
 "BLOB_HEX" "System1" "BLOB" ["0102030405060708 090A0B0C0D0E0F10"]
 "BOOLEAN_TEXT" "System1" "BOOLEAN" [1]

iList = instanceList(cdfxObj,"VALUE_NUMERIC")

iList =

 1×6 table

 ShortName System Category Value Units FeatureReference
 _______________ _________ ________ _________ _____ ________________

 "VALUE_NUMERIC" "System1" "VALUE" [12.2400] "" "model1"

iList = instanceList(cdfxObj,"VALUE_NUMERIC","System1")

iList =

11 Functions

11-118

 1×6 table

 ShortName System Category Value Units FeatureReference
 _______________ _________ ________ _________ _____ ________________

 "VALUE_NUMERIC" "System1" "VALUE" [12.2400] "" "model1"

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

instName — Instance name
string

Instance name, specified as a string.
Example: "NUMERIC_VALUE"
Data Types: string

sysName — Parent system name
string

Parent system name, specified as a string.
Example: "System2"
Data Types: string

Output Arguments
iList — Instance list
table

Instance list, returned as a table.

See Also
Functions
cdfx | systemList | getValue | setValue | write

Introduced in R2019a

 instanceList

11-119

isConnected
Connection status

Syntax
isConnected(xcpch)

Description
isConnected(xcpch) returns a logical value to indicate active connection to the server.

Examples

Verify if XCP Channel is Connected

Create a new XCP channel and see if it is connected.

a2l = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1)
isConnected(xcpch)

ans =

 0

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

See Also
xcpChannel

Introduced in R2013a

11 Functions

11-120

isMeasurementRunning
Indicate if measurement is active

Syntax
isMeasurementRunning(xcpch)

Description
isMeasurementRunning(xcpch) returns a logical indicating if the configured measurements are
active and running.

Examples

Verify if Configured Measurement List is Active

Set up a DAQ measurement list and start it. Verify if this list is running.

Create an XCP channel with a CAN server module.

a2l = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Set up a data acquisition measurement list with the '10 ms' event and 'Bitslice' measurement
and determine if the measurement is running.

createMeasurementList(xcpch,'DAQ','10 ms','BitSlice')
isMeasurementRunning(xcpch)

ans =

 0

Start your measurement and verify that the measurement is running.

startMeasurement(xcpch)
isMeasurementRunning(xcpch)

ans =

 1

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

 isMeasurementRunning

11-121

See Also
startMeasurement

Introduced in R2013a

11 Functions

11-122

j1939Channel
Create J1939 CAN channel

Syntax
j1939Ch = j1939Channel(database,'vendor','device')
j1939Ch = j1939Channel(database,'vendor','device',chanIndex)

Description
j1939Ch = j1939Channel(database,'vendor','device') creates a J1939 channel connected
to the specified CAN device. Use this syntax for National Instruments and PEAK-System devices,
which do not require a channel index argument.

j1939Ch = j1939Channel(database,'vendor','device',chanIndex) creates a J1939 CAN
channel connected to the specified CAN device and channel index. Use this syntax for Vector and
Kvaser devices that support a channel index specifier.

Examples

Create a J1939 CAN Channel for a Vector Device

Specify a database.

db = canDatabase('C:\J1939DB.dbc');

Create the channel object.

j1939Ch = j1939Channel(db,'Vector','Virtual 1',1)

j1939Ch =

 Channel with properties:

 Device Information:

 DeviceVendor: 'Vector'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0

 Data Details:

 ParameterGroupsAvailable: 0
 ParameterGroupsReceived: 0
 ParameterGroupsTransmitted: 0
 FilterPassList: []
 FilterBlockList: []

 Channel Information:

 j1939Channel

11-123

 Running: 0
 BusStatus: 'N/A'
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 SilentMode: 0
 TransceiverName: ''
 TransceiverState: 0
 BusSpeed: 500000
 SJW: 1
 TSEG1: 4
 TSEG2: 3
 NumOfSamples: 1

 Other Information:

 UserData: []

Create a J1939 CAN Channel for a National Instruments Device

Specify a database.

db = canDatabase('C:\J1939DB.dbc');

Create the channel object.

j1939Ch = j1939Channel(db,'NI','CAN1');

Input Arguments
database — CAN database
CAN database object

CAN database specified as a CAN database object. The specified database contains J1939 parameter
group definitions.
Example: database = canDatabase('C:\database.dbc')

vendor — Name of device vendor
'Vector' | 'NI' | 'Kvaser' | 'Peak-System'

Name of device vendor, specified as a character vector or string.
Example: 'Vector'
Data Types: char | string

device — Name of CAN device
char vector | string

Name of CAN device attached to the J1939 CAN channel, specified as a character vector or string.

For Kvaser and Vector products, device is a combination of the device type and a device index. For
example, a Kvaser device might be 'USBcanProfessional 1'; if you have two Vector CANcardXL
devices, device can be 'CANcardXL 1' or 'CANcardXL 2'.

11 Functions

11-124

For National Instruments devices the devicenumber is the interface number defined in the NI
Measurement & Automation Explorer.

For PEAK-System devices the devicenumber is the alphanumeric device number defined for the
channel.
Example: 'Virtual 1'
Data Types: char | string

chanIndex — Channel number of CAN device
numeric

Channel number of the CAN device attached to the J1939 CAN channel, specified as a numeric value.
Use this argument with Kvaser and Vector devices.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
j1939Ch — J1939 CAN channel
J1939 CAN channel object

J1939 CAN channel returned as a j1939.Channel object, with j1939.Channel Properties.

See Also
Functions
canDatabase | j1939ParameterGroup | transmit | receive

Properties
j1939.Channel Properties

Topics
“J1939 Channel Workflow” on page 7-6

Introduced in R2015b

 j1939Channel

11-125

j1939ParameterGroup
Create J1939 parameter group

Syntax
pg = j1939ParameterGroup(database,name)
pg = j1939ParameterGroup(database,j1939TimeTable)

Description
pg = j1939ParameterGroup(database,name) creates a parameter group using the name
defined in the specified database.

pg = j1939ParameterGroup(database,j1939TimeTable) creates parameter groups from the
specified J1939 parameter group timetable. This allows you to convert parameter group timetables
into arrays of parameter group objects to be used in code from earlier versions of the toolbox. For
performance reasons, it is recommended that you work with timetables instead of parameter group
objects.

Examples

Create a Parameter Group

This example shows how to attach a database to a parameter group name and view the signal
information in the group.

Create a database handle.

db = canDatabase('C:\j1939Demo.dbc');

Create a parameter group.

pg = j1939ParameterGroup(db,'PackedData')

pg =

 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'PackedData'
 PGN: 57344
 Priority: 6
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 50
 DestinationAddress: 255

 Data Details:

 Timestamp: 0
 Data: [255 255 255 255 255 255 255 255]

11 Functions

11-126

 Signals: [1x1 struct]

 Other Information:

 UserData: []

Examine the signals in the parameter group.

pg.Signals

ans =

 ToggleSwitch: -1
 SliderSwitch: -1
 RockerSwitch: -1
 RepeatingStairs: 255
 PushButton: 1

Input Arguments
database — Handle to CAN database
CAN database object

Handle to CAN database, specified as a CAN database object. The specified database contains J1939
parameter group definitions.
Example: db = canDatabase('C:\database.dbc')

name — Parameter group name
character vector | string

Parameter group name, specified as a character vector or string. The name must match the name
specified in the attached CAN database.
Example: 'pgName'
Data Types: char | string

Output Arguments
pg — J1939 parameter group
parameter group object

J1939 parameter group, returned as a parameter group object, with j1939.ParameterGroup
Properties.

See Also
Functions
canDatabase | j1939Channel

Properties
j1939.ParameterGroup Properties

Topics
“J1939 Interface” on page 7-2

 j1939ParameterGroup

11-127

“J1939 Parameter Group Format” on page 7-3

Introduced in R2015b

11 Functions

11-128

j1939ParameterGroupImport
Import J1939 log file

Syntax
pgs = j1939ParameterGroupImport(file,vendor,database)

Description
pgs = j1939ParameterGroupImport(file,vendor,database) reads the input file as a CAN
message log file from the specified vendor. Using the specified CAN database, the CAN messages are
converted into J1939 parameter groups, and assigned to the timetable pgs.

Examples

Import Log Data to J1939 Parameter Groups

Read a CAN message log file, and generate J1939 parameter groups according to a CAN database.

db = canDatabase('MyDatabase.dbc');
pgs = j1939ParameterGroupImport('MsgLog.asc','Vector',db);

Input Arguments
file — CAN message log file
character vector | string

CAN message log file, specified as a character vector or string.
Example: 'MyDatabase.dbc'
Data Types: char | string

vendor — Vendor file format
'Kvaser' | 'Vector'

Vendor file format, specified as a character vector or string. The supported file formats are those
defined by Vector and Kvaser.
Example: 'Vector'
Data Types: char | string

database — CAN database
database handle

CAN database, specified as a database handle.

 j1939ParameterGroupImport

11-129

Output Arguments
pgs — J1939 parameter groups
timetable of parameter groups

J1939 parameter groups, returned as a timetable of parameter groups.

See Also
Functions
canDatabase | j1939ParameterGroupTimetable | j1939SignalTimetable

Introduced in R2017a

11 Functions

11-130

j1939ParameterGroupTimetable
Convert CAN messages or J1939 parameter groups into timetable

Syntax
j1939PGTT = j1939ParameterGroupTimetable(msg)
j1939PGTT = j1939ParameterGroupTimetable(msg,database)

Description
Handling parameter group information in a timetable format allows significantly faster processing of
J1939 network data across a wide array of workflows.

j1939PGTT = j1939ParameterGroupTimetable(msg) takes the input messages as an array of
J1939 parameter group objects and returns a J1939 parameter group timetable. The timetable
contains the decoded data (PGN, Priority, Data, etc.) from the input J1939 traffic. Use this function to
convert J1939 information received as objects in earlier versions of the toolbox to the preferred
timetable data type.

j1939PGTT = j1939ParameterGroupTimetable(msg,database) takes the input messages as
either a CAN message timetable, an ASAM MDF CAN message timetable, an array of CAN message
objects, a CAN message structure from the CAN Log block, an array of J1939 parameter group
objects, or an existing J1939 parameter group timetable and returns a J1939 parameter group
timetable. If CAN messages are input, the database is used to transform the CAN messages into
J1939 parameter groups. If J1939 parameter groups are input, the database is used to re-decode the
J1939 parameter group signals.

All CAN message information given as input must originate from a J1939 network. If the provided
J1939 database does not contain the information needed to decode the input CAN messages, the
output J1939 parameter group timetable is empty.

Examples

Convert Various Message Information to J1939 Parameter Group Timetable

Convert CAN and J1939 data from various formats.

Convert the output structure from a CAN Log block.

load LogBlockOutput.mat
db = canDatabase("Database.dbc")
j1939PGTT = j1939ParameterGroupTimetable(canMsgs, db)

Convert an array of CAN message objects.

db = canDatabase("Database.dbc")
j1939PGTT = j1939ParameterGroupTimetable(canMsgObjects, db)

Convert a timetable of CAN messages.

 j1939ParameterGroupTimetable

11-131

db = canDatabase("Database.dbc")
j1939PGTT = j1939ParameterGroupTimetable(canMsgTimetable, db)

Convert ASAM MDF CAN messages.

m = mdf("LogFile.mf4")
mdfData = read(m, 2, m.ChannelNames{2})
db = canDatabase("Database.dbc")
j1939PGTT = j1939ParameterGroupTimetable(mdfData, db)

Convert Vector BLF CAN messages.

blfData = blfread("LogFile.blf", 1)
db = canDatabase("Database.dbc")
j1939PGTT = j1939ParameterGroupTimetable(blfData, db)

Repackage J1939 parameter group objects

db = canDatabase("Database.dbc")
j1939PGTT = j1939ParameterGroupTimetable(j1939PGObjects, db)

Re-decode signals in an existing J1939 parameter group timetable.

db = canDatabase("Database.dbc")
j1939PGTT = j1939ParameterGroupTimetable(j1939PGTimetable, db)

Input Arguments
msg — Message data
timetable | array | structure

Message data, in one of the following formats:

• Array of J1939 parameter group objects
• Timetable of J1939 parameter groups
• Timetable of CAN messages
• Timetable of ASAM MDF CAN messages
• Array of CAN message objects
• Structure of CAN messages from a CAN Log block

database — CAN database
database handle

CAN database, specified as a database handle, created with the canDatabase function.

Output Arguments
j1939PGTT — Timetable of J1939 parameter groups
timetable

J1939 parameter groups, returned as a timetable.

11 Functions

11-132

See Also
Functions
canDatabase | j1939ParameterGroup | j1939ParameterGroupImport |
j1939SignalTimetable

Introduced in R2021a

 j1939ParameterGroupTimetable

11-133

j1939SignalTimetable
Create J1939 signal timetable from J1939 parameter group timetable

Syntax
sigTables = j1939SignalTimetable(pgTable)
sigTables = j1939SignalTimetable(pgTable,"ParameterGroups",pgNames)
sigTables = j1939SignalTimetable(___ ,"IncludeAddresses",true)

Description
sigTables = j1939SignalTimetable(pgTable) converts a timetable of J1939 parameter group
information into individual timetables of signal values. The function returns a structure with a field
for each unique parameter group in the timetable. Each field value is a timetable of all the signals in
that parameter group. Use this form of syntax to convert an entire set of parameter groups in a single
function call.

sigTables = j1939SignalTimetable(pgTable,"ParameterGroups",pgNames) returns
signal timetables for only the parameter groups specified by pgNames, which can specify one or more
parameter group names. Use this form of syntax to quickly convert only a subset of parameter groups
into signal timetables.

sigTables = j1939SignalTimetable(___ ,"IncludeAddresses",true) adds source and
destination addresses to each J1939 signal timetable. The default argument value is false, in which
case the J1939 signal timetables do not include addresses.

.

Examples

Create J1939 Signal Timetables from All Parameter Groups

Create J1939 signal timetables from all data in a J1939 parameter group timetable.

sigTables = j1939SignalTimetable(pgTable);

Create J1939 Signal Timetables from Specified Parameter Groups

Create J1939 signal timetables from only specified J1939 parameter groups in a timetable.
sigTable1 = j1939SignalTimetable(pgTable,"ParameterGroups","pgName");
sigTable2 = j1939SignalTimetable(pgTable,"ParameterGroups",{"pgName1","pgName2"});

Input Arguments
pgTable — J1939 parameter group timetable
timetable

11 Functions

11-134

J1939 parameter groups, specified as a timetable.

pgNames — Parameter group names
char | string | cell

J1939 parameter group names, specified as a character vector, string, or array.
Data Types: char | string | cell

Output Arguments
sigTables — J1939 signals
structure

J1939 signals, returned as a structure. The structure field names correspond to the parameter groups
of the input, and each field value is a timetable of J1939 signals.
Data Types: struct

See Also
Functions
j1939ParameterGroupImport | j1939ParameterGroupTimetable

Introduced in R2021a

 j1939SignalTimetable

11-135

mdf
Access information contained in MDF-file

Syntax
mdfObj = mdf(mdfFileName)

Description
The mdf function creates an object for accessing a measurement data format (MDF) file. See
“Measurement Data Format (MDF)” on page 11-138.

mdfObj = mdf(mdfFileName) identifies a measurement data format (MDF) file and returns an
MDF-file object, which you can use to access information and data contained in the file. You can
specify a full or partial path to the file.

Examples

Create MDF-File Object for Specified MDF-File

Create an MDF object for a given file, and view the object display.

mdfObj = mdf('MDFFile.mf4')

MDF with properties:

 File Details
 Name: 'MDFFile.mf4'
 Path: 'c:\temp\MDFFile.mf4'
 Author: 'HOK'
 Department: 'Research'
 Project: 'MDF'
 Subject: 'CAN bus'
 Comment: 'This file contains CAN messages'
 Version: '4.10'
 DataSize: 32100
 InitialTimestamp: 2016-02-27 12:09:02

 Creator Details
 ProgramIdentifier: 'mmddff.04'
 Creator: [1x1 struct]

 File Contents
 Attachment: [1×1 struct]
 ChannelNames: {6×1 cell}
 ChannelGroup: [1×6 struct]

11 Functions

11-136

 Options
 Conversion: Numeric

Input Arguments
mdfFileName — MDF-file name
char vector | string

MDF-file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char | string

Output Arguments
mdfObj — MDF-file
MDF-file object

MDF-file, returned as an MDF-file object. The object provides access to the MDF-file information
contained in the following properties.

Property Description
Name Name of the MDF-file, including extension
Path Full path to the MDF-file, including file name
Author Author who originated the MDF-file
Department Department that originated the MDF-file
Project Project that originated the MDF-file
Subject Subject matter in the MDF-file
Comment Open comment field from the MDF-file
Version MDF standard version of the file
DataSize Total size of the data in the MDF-file, in bytes
InitialTimestamp Time when file data acquisition began in UTC or local time
ProgramIdentifier Originating program of the MDF-file
Creator Structure containing details about creator of the MDF-file, with these

fields: VendorName, ToolName, ToolVersion, UserName, and
Comment

Attachment Structure of information about attachments contained within the MDF-
file, with these fields: Name, Path, Comment, Type, MIMEType, Size,
EmbeddedSize, and MD5CheckSum

ChannelNames Cell array of the channel names in each channel group
ChannelGroup Structure of information about channel groups contained within the

MDF-file, with these fields: AcquisitionName, Comment, NumSamples,
DataSize, Sorted, and Channel

 mdf

11-137

Property Description
Conversion Conversion option for data in the MDF-file. Supported values are:

• 'Numeric' (default) — Apply only numeric conversion rules
(CC_Type 1-6). Data with non-numeric conversion rules is imported as
raw, unconverted values.

• 'None' — Do not apply any conversion rules. All data is imported as
raw data.

• 'All' — Apply all numeric and text conversion rules (CC_Type 1-10).

More About
Measurement Data Format (MDF)

Measurement data format (MDF) files are binary format files for storing measurement data. The
format standard is defined by the Association for Standardization of Automation and Measuring
Systems (ASAM), which you can read about at ASAM MDF.

Vehicle Network Toolbox and Powertrain Blockset™ provide access to MDF-files through an object
you create with the mdf function.

See Also
Functions
saveAttachment | read | mdfVisualize | mdfInfo | mdfSort

Topics
“Get Started with MDF-Files” on page 14-79
“Read Data from MDF-Files” on page 14-83
“Data Analytics Application with Many MDF-Files” on page 14-110
“File Format Limitations” on page 9-5
“Troubleshooting MDF Applications” on page 9-7

Introduced in R2016b

11 Functions

11-138

https://www.asam.net/standards/detail/mdf/

mdfDatastore
Datastore for collection of MDF-files

Description
Use the MDF datastore object to access data from a collection of MDF-files.

Creation

Syntax
mdfds = mdfDatastore(location)
mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,...)

Description

mdfds = mdfDatastore(location) creates an MDFDatastore based on an MDF-file or a
collection of files in the folder specified by location. All files in the folder with
extensions .mdf, .dat, or .mf4 are included.

mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,...) specifies function
options and properties of mdfds using optional name-value pairs.

Input Arguments

location — Location of MDF datastore files
character vector | cell array | DsFileSet object

Location of MDF datastore files, specified as a character vector, cell array of character vectors, or
matlab.io.datastore.DsFileSet object identifying either files or folders. The path can be
relative or absolute, and can contain the wildcard character *. If location specifies a folder, by
default the datastore includes all files in that folder with the extensions .mdf, .dat, or .mf4.
Example: 'CANape.MF4'
Data Types: char | cell | DsFileSet

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments to set file information or object
“Properties” on page 11-140. Allowed options are IncludeSubfolders, FileExtensions, and the
properties ReadSize, SelectedChannelGroupNumber, and SelectedChannelNames.
Example: 'SelectedChannelNames','Counter_B4'

IncludeSubfolders — Include files in subfolders
false (default) | true

Include files in subfolders, specified as a logical. Specify true to include files in each folder and
recursively in subfolders.

 mdfDatastore

11-139

Example: 'IncludeSubfolders',true
Data Types: logical

FileExtensions — Custom extensions for filenames to include in MDF datastore
{'.mdf','.dat','.mf4'} (default) | char | cell

Custom extensions for filenames to include in the MDF datastore, specified as a character vector or
cell array of character vectors. By default, the supported extensions include .mdf, .dat, and .mf4. If
your files have custom or nonstandard extensions, use this Name-Value setting to include files with
those extensions.
Example: 'FileExtensions',{'.myformat1','.myformat2'}
Data Types: char | cell

Properties
ChannelGroups — All channel groups present in first MDF-file
table

This property is read-only.

All channel groups present in first MDF-file, returned as a table.
Data Types: table

Channels — All channels present in first MDF-file
table

This property is read-only.

All channels present in first MDF-file, returned as a table.

Those channels targeted for reading must have the same name and belong to the same channel group
in each file of the MDF datastore.
Data Types: table

Files — Files included in datastore
char | string | cell

Files included in the datastore, specified as a character vector, string, or cell array.
Example: {'file1.mf4','file2.mf4'}
Data Types: char | string | cell

ReadSize — Size of data returned by read
'file' (default) | numeric | duration

Size of data returned by the read function, specified as 'file', a numeric value, or a duration. A
character vector value of 'file' causes the entire file to be read; a numeric double value specifies
the number of records to read; and a duration value specifies a time range to read.

If you later change the ReadSize property value type, the datastore resets.
Example: 50

11 Functions

11-140

Data Types: double | char | duration

SelectedChannelGroupNumber — Channel group to read
numeric scalar

Channel group to read, specified as a numeric scalar value.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SelectedChannelNames — Names of channels to read
char | string | cell

Names of channels to read, specified as a character vector, string, or cell array.

Those channels targeted for reading must have the same name and belong to the same channel group
in each file of the MDF datastore.
Example: 'Counter_B4'
Data Types: char | string | cell

Conversion — Conversion option for MDF-file data
'Numeric' (default) | 'All' | 'None'

Conversion option for MDF-file data, specified as 'Numeric', 'All', or 'None'.

• 'Numeric' (default) — Apply only numeric conversion rules (CC_Type 1-6). Data with non-
numeric conversion rules is imported as raw, unconverted values.

• 'None' — Do not apply any conversion rules. All data is imported as raw data.
• 'All' — Apply all numeric and text conversion rules (CC_Type 1-10).

Example: 'All'
Data Types: char | string

Object Functions
read Read data in MDF datastore
readall Read all data in MDF datastore
preview Subset of data from MDF datastore
reset Reset MDF datastore to initial state
hasdata Determine if data is available to read from MDF datastore
partition Partition MDF datastore
numpartitions Number of partitions for MDF datastore
combine (MATLAB) Combine data from multiple datastores
transform (MATLAB) Transform datastore
isPartitionable (MATLAB) Determine whether datastore is partitionable
isShuffleable (MATLAB) Determine whether datastore is shuffleable

Examples

 mdfDatastore

11-141

Create an MDF Datastore

Create an MDF datastore from the sample file CANape.MF4, and read it into a timetable.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
while hasdata(mdfds)
 m = read(mdfds);
end

See Also
Topics
“Get Started with MDF Datastore” on page 14-88

Introduced in R2017b

11 Functions

11-142

mdfFinalize
Finalize MDF-file by ASAM standards

Syntax
mdfFinalize(UnfinalizedMDFFile)
mdfFinalize(UnfinalizedMDFFile,FinalizedMDFFile)
finalizedPath = mdfFinalize(___)

Description
mdfFinalize(UnfinalizedMDFFile) sorts and finalizes the specified MDF-file according to ASAM
standards, and overwrites the original file.

mdfFinalize(UnfinalizedMDFFile,FinalizedMDFFile) creates a sorted, finalized copy of the
MDF-file with the specified name, FinalizedMDFFile.

finalizedPath = mdfFinalize(___) returns an output argument, finalizedPath, indicating
the full path to the sorted, finalized file, including the file name.

Note This function is supported only on 64-bit Windows operating systems.

Examples

Finalize an MDF-File in Place

Finalize an MDF-file, overwriting the original.

finalizedPath = mdfFinalize('MDFFile.mf4');
mdfObj = mdf(finalizedPath);

Finalize an MDF-File into a Copy

Finalize an MDF-file, creating a separate copy from the original.
finalizedPath = mdfFinalize('UnfinalizedMDFFile.mf4','FinalizedMDFFile.mf4');
mdfObj = mdf(finalizedPath);

Input Arguments
UnfinalizedMDFFile — Original unfinalized MDF-file
string | char

Original unfinalized MDF-file, specified as a string or character vector. Full and relative path names
are allowed.
Example: 'UnfinalizedMDFFile.mf4'

 mdfFinalize

11-143

Data Types: char | string

FinalizedMDFFile — New finalized copy of MDF-file
string | char

New finalized copy of MDF-file, specified as a string or character vector. Full and relative path names
are allowed.
Example: 'FinalizedMDFFile.mf4'
Data Types: char | string

Output Arguments
finalizedPath — Path to finalized file
char

Full path to finalized file, returned as a character vector. The path includes the file name.

See Also
Functions
mdf | read | mdfSort

Introduced in R2021b

11 Functions

11-144

mdfInfo
Information about MDF-file

Syntax
fileInfo = mdfInfo(mdfFileName)

Description
fileInfo = mdfInfo(mdfFileName) returns a struct that contains information about the
specified MDF-file, including name, location, version, size, and initial timestamp of the data.

Examples

Access Information About MDF-File

Get the MDF-file information, and programmatically read its version.

fileInfo = mdfInfo('MDFFile.mdf');
fileInfo.Version

ans =

 '3.20'

Input Arguments
mdfFileName — MDF-file name
char vector | string

MDF-file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char | string

Output Arguments
fileInfo — MDF-file information
structure

MDF-file information, returned as a structure.

See Also
Functions
mdf

 mdfInfo

11-145

Introduced in R2019b

11 Functions

11-146

mdfSort
Sort MDF-file by ASAM standards

Syntax
mdfSort(UnsortedMDFFile)
mdfSort(UnsortedMDFFile,SortedMDFFile)
sortedPath = mdfSort(___)

Description
If you get an error when trying to read an unsorted MDF-file, sort the file with mdfSort and read
from that instead.

mdfSort(UnsortedMDFFile) sorts the specified MDF-file according to ASAM standards for fast
reading. The sorted result overwrites the original file.

mdfSort(UnsortedMDFFile,SortedMDFFile) creates a sorted copy of the MDF-file with the
specified name, SortedMDFFile.

sortedPath = mdfSort(___) returns an output argument, sortedPath, indicating the full path
to the sorted file, including the file name.

Note This function is supported only on 64-bit Windows operating systems.

Examples

Sort an MDF-File in Place

Sort an MDF-file, overwriting the original, and read its data.

sortedPath = mdfSort('MDFFile.mf4');
mdfObj = mdf(sortedPath);
data = read(mdfObj);

Sort an MDF-File into a Copy

Create a sorted copy of an MDF-file and read its data.

sortedPath = mdfSort('UnsortedMDFFile.mf4','SortedMDFFile.mf4');
mdfObj = mdf(sortedPath);
data = read(mdfObj);

Input Arguments
UnsortedMDFFile — Original MDF-file with unsorted data
string | char

 mdfSort

11-147

Original MDF-file without sorted data, specified as a string or character vector. Full and relative path
names are allowed.
Example: 'UnsortedMDFFile.mf4'
Data Types: char | string

SortedMDFFile — New copy of MDF-file with sorted data
string | char

New copy of MDF-file with sorted data, specified as a string or character vector. Full and relative
path names are allowed.
Example: 'SortedMDFFile.mf4'
Data Types: char | string

Output Arguments
sortedPath — Path to sorted file
char

Full path to sorted file, returned as a character vector. The path includes the file name.

See Also
Functions
mdf | read | mdfFinalize

Introduced in R2019b

11 Functions

11-148

mdfVisualize
View channel data from MDF-file

Syntax
mdfVisualize(mdfFileName)

Description
mdfVisualize(mdfFileName) opens an MDF-file in the Simulation Data Inspector for viewing and
interacting with channel data. mdfFileName is the name of the MDF-file, specified as a full or partial
path.

Note mdfVisualize supports only integer and floating point data types in MDF-file channels.

Examples

View MDF Data

View the data from a specified MDF-file in the Simulation Data Inspector.

mdfVisualize('File01.mf4')

Input Arguments
mdfFileName — MDF-file name
char vector | string

MDF-file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char | string

See Also
Functions
mdf | read

Topics
“View and Analyze Simulation Results” (Simulink)

Introduced in R2019a

 mdfVisualize

11-149

messageInfo
Information about CAN database messages

Syntax
msgInfo = messageInfo(candb)
msgInfo = messageInfo(candb,msgName)
msgInfo = messageInfo(candb,id,msgIsExtended)

Description
msgInfo = messageInfo(candb) returns a structure with information about the CAN messages in
the specified database candb.

msgInfo = messageInfo(candb,msgName) returns information about the specified message
'msgName'.

msgInfo = messageInfo(candb,id,msgIsExtended) returns information about the message
with the specified standard or extended ID.

Examples

Get All Messages

Get information from all messages in a CAN database.

candb = canDatabase('J1939DB.dbc');
msgInfo = messageInfo(candb)

msgInfo =
3x1 struct array with fields:
 Name
 Comment
 ID
 Extended
 J1939
 Length
 Signals
 SignalInfo
 TxNodes
 Attributes
 AttributeInfo

You can index into the structure for information on a particular message.

Get One Message by Name

Get information from one message in a CAN database using the message name.

11 Functions

11-150

candb = canDatabase('J1939DB.dbc');
msgInfo = messageInfo(candb,'A1')

msgInfo =
 Name: 'A1'
 Comment: 'This is an A1 message'
 ID: 419364350
 Extended: 1
 J1939: [1x1 struct]
 Length: 8
 Signals: {2x1 cell}
 SignalInfo: [2x1 struct]
 TxNodes: {'AerodynamicControl'}
 Attributes: {4x1 cell}
 AttributeInfo: [4x1 struct]

Get One Message by ID

Get information from one message in a CAN database using the message ID.

candb = canDatabase('J1939DB.dbc');
msgInfo = messageInfo(candb,419364350,true)

msgInfo =
 Name: 'A1'
 Comment: 'This is an A1 message'
 ID: 419364350
 Extended: 1
 J1939: [1x1 struct]
 Length: 8
 Signals: {2x1 cell}
 SignalInfo: [2x1 struct]
 TxNodes: {'AerodynamicControl'}
 Attributes: {4x1 cell}
 AttributeInfo: [4x1 struct]

Input Arguments
candb — CAN database
CAN database object

CAN database, specified as a CAN database object. candb identifies the database containing the CAN
messages that you want information about.
Example: candb = canDatabase(_____)

msgName — Message name
character vector | string

Message name, specified as a character vector or string. Provide the name of the message you want
information about.
Example: 'A1'
Data Types: char | string

 messageInfo

11-151

id — Message ID
numeric value

Message ID, specified as a numeric value. id is the numeric identifier of the specified message, in
either extended or standard form.
Example: 419364350
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

msgIsExtended — Message ID format
true | false

Message ID format, specified as a logical. Specify whether the message ID is in standard or extended
type. Use the logical value true if extended, or false if standard. There is no default; you must
provide this argument when using a message ID.
Example: true
Data Types: logical

Output Arguments
msgInfo — Message information
structure

Message information, returned as a structure or array of structures for the specified CAN database
and messages.

See Also
Functions
canDatabase | attributeInfo | nodeInfo | signalInfo | canMessage

Properties
can.Database Properties

Introduced in R2009a

11 Functions

11-152

nodeInfo
Information about CAN database node

Syntax
info = nodeInfo(db)
info = nodeInfo(db,NodeName)

Description
info = nodeInfo(db) returns a structure containing information for all nodes found in the
database db.

If no matches are found in the database, nodeInfo returns an empty node information structure.

info = nodeInfo(db,NodeName) returns a structure containing information for the specified
node in the database db.

Examples

View Information from All Nodes

Create a CAN database object, and view information about its nodes.

db = canDatabase('c:\Database.dbc')
info = nodeInfo(db)

info =
3x1 struct array with fields:
 Name
 Comment
 Attributes
 AttributeInfo

View name of first node.

n = info(1).Name

n =
AerodynamicControl

View Information from One Node

Create a CAN database object, and view information about its first node, listed in the previous
example.

db = canDatabase('c:\Database.dbc')
info = nodeInfo(db,'AerodynamicControl')

 nodeInfo

11-153

info =
 Name: 'AerodynamicControl'
 Comment: 'This is an AerodynamicControl node'
 Attributes: {3x1 cell}
 AttributeInfo: [3x1 struct]

Input Arguments
db — CAN database
CAN database object

CAN database, specified as a CAN database object.
Example: db = canDatabase(_____)

NodeName — Node name
char vector | string

Node name, specified as a character vector or string.
Example: 'AerodynamicControl'
Data Types: char | string

Output Arguments
info — Node information
structure

Node information, returned as a structure with these fields:

Field Description
Name Node name
Comment Text about node

See Also
Functions
attributeInfo | messageInfo | signalInfo | canDatabase

Properties
can.Database Properties

Introduced in R2015b

11 Functions

11-154

numpartitions
Package: matlab.io.datastore

Number of partitions for MDF datastore

Syntax
N = numpartitions(mdfds)
N = numpartitions(mdfds,pool)

Description
N = numpartitions(mdfds) returns the recommended number of partitions for the MDF
datastore mdfds. Use the result as an input to the partition function.

N = numpartitions(mdfds,pool) returns a reasonable number of partitions to parallelize mdfds
over the parallel pool, pool, based on the number of files in the datastore and the number of workers
in the pool.

Examples

Find Recommended Number of Partitions for MDF Datastore

Determine the number of partitions you should use for your MDF datastore.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
N = numpartitions(mdfds);

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

pool — Parallel pool
parallel pool object

Parallel pool specified as a parallel pool object.
Example: gcp

Output Arguments
N — Number of partitions
double

 numpartitions

11-155

Number of partitions, returned as a double. This number is the calculated recommendation for the
number of partitions for your MDF datastore. Use this when partitioning your datastore with the
partition function.

See Also
Functions
mdfDatastore | read | reset | partition

Introduced in R2017b

11 Functions

11-156

pack
Pack signal data into CAN message

Syntax
pack(message,value,startbit,signalsize,byteorder)

Description
pack(message,value,startbit,signalsize,byteorder) takes specified input parameters and
packs them into the message.

Examples

Pack a CAN Message

Pack a CAN message with a 16-bit integer value of 1000.

message = canMessage(500,false,8);
pack(message,int16(1000),0,16,'LittleEndian')
message.Data

 1×8 uint8 row vector

 232 3 0 0 0 0 0 0

Note that 1000 = (3 x 256) + 232.

Pack a CAN message with a double value of 3.14. A double requires 64 bits.

pack(message,3.14,0,64,'LittleEndian')

Pack a CAN message with a single value of -40. A single requires 32 bits.

pack(message,single(-40),0,32,'LittleEndian')

Input Arguments
message — CAN message
CAN message object

CAN message, specified as a CAN message object.
Example: canMessage

value — Value of signal to pack into message
numeric value

Value of signal to pack into message, specified as a numeric value. The value is assumed decimal, and
distributed among the 8 bytes of the message Data property. You should convert the value into the
data type expected for transmission.

 pack

11-157

Example: int16(1000)
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

startbit — Signal starting bit in data
single | double

Signal starting bit in the data, specified as a single or double value. This is the least significant bit
position in the signal data. Accepted values for startbit are from 0 through 63, inclusive.
Example: 0
Data Types: single | double

signalsize — Length of signal in bits
numeric value

Length of the signal in bits, specified as a numeric value. Accepted values for signalsize are from
1 through 64, inclusive.
Example: 16
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

byteorder — Signal byte order format
'LittleEndian' | 'BigEndian'

Signal byte order format, specified as 'LittleEndian' or 'BigEndian'.
Example: 'LittleEndian'
Data Types: char | string

See Also
Functions
canMessage | extractAll | extractRecent | extractTime | unpack

Introduced in R2009a

11 Functions

11-158

partition
Package: matlab.io.datastore

Partition MDF datastore

Syntax
subds = partition(mdfds,N,index)

subds = partition(mdfds,'Files',index)
subds = partition(mdfds,'Files',filename)

Description
subds = partition(mdfds,N,index) partitions the MDF datastore mdfds into the number of
parts specified by N, and returns the partition corresponding to the index index.

subds = partition(mdfds,'Files',index) partitions the MDF datastore by files and returns
the partition corresponding to the file of index index in the Files property.

subds = partition(mdfds,'Files',filename) partitions the datastore by files and returns the
partition corresponding to the specified filename.

Examples

Partition an MDF Datastore into Default Parts

Partition an MDF datastore from the sample file CANape.MF4, and return the first part.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
N = numpartitions(mdfds);
subds1 = partition(mdfds,N,1);

Partition an MDF Datastore by Its Files

Partition an MDF datastore according to its files, and return partitions by index and file name.

cd c:\temp
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.Files

ans =
 3×1 cell array
 'c:\temp\CANape1.MF4'
 'c:\temp\CANape2.MF4'
 'c:\temp\CANape3.MF4'

 partition

11-159

subds2 = partition(mdfds,'files',2);
subds3 = partition(mdfds,'files','c:\temp\CANape3.MF4');

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

N — Number of partitions
positive integer

Number of partitions, specified as a double of positive integer value. Use the numpartitions
function for the recommended number or partitions.
Example: numpartitions(mdfds)
Data Types: double

index — Index
positive integer

Index, specified as a double of positive integer value. When using the 'files' partition scheme, this
value corresponds to the index of the MDF datastore object Files property.
Example: 1
Data Types: double

filename — File name
character vector

File name, specified as a character vector. The argument can specify a relative or absolute path.
Example: 'CANape.MF4'
Data Types: char

Output Arguments
subds — MDF datastore partition
MDF datastore object

MDF datastore partition, returned as an MDF datastore object. This output datastore is of the same
type as the input datastore mdfds.

See Also
Functions
mdfDatastore | read | reset | numpartitions

Introduced in R2017b

11 Functions

11-160

preview
Package: matlab.io.datastore

Subset of data from MDF datastore

Syntax
data = preview(mdfds)

Description
data = preview(mdfds) returns a subset of data from MDF datastore mdfds without changing the
current position in the datastore.

Examples

Examine Preview of MDF Datastore
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
data = preview(mdfds)

data2 =

 10×74 timetable

 Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM
 ______________ __________ __________ __________ __________ ___

 0.00082554 sec 0 0 1 0 100
 0.010826 sec 0 0 1 0 100
 0.020826 sec 0 0 1 0 100
 0.030826 sec 0 0 1 0 100
 0.040826 sec 0 0 1 0 100
 0.050826 sec 0 0 1 0 100
 0.060826 sec 0 0 1 0 100
 0.070826 sec 0 0 1 0 100

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments
data — Subset of data
timetable

Subset of data, returned as a timetable of MDF records.

 preview

11-161

See Also
Functions
mdfDatastore | read | hasdata

Introduced in R2017b

11 Functions

11-162

read
Read channel data from MDF-file

Syntax
data = read(mdfObj)
data = read(mdfObj,chanList)
data = read(mdfObj,chanGroupIndex,chanName)
data = read(mdfObj,chanGroupIndex,chanName,startPosition)
data = read(mdfObj,chanGroupIndex,chanName,startPosition,endPosition)
data = read(___ ,'Conversion',convOpt)
data = read(___ ,'OutputFormat',fmtType)
[data,time] = read(___ ,'OutputFormat','Vector')

Description
data = read(mdfObj) reads all data for all channels from the MDF-file identified by the MDF-file
object mdfObj, and assigns the output to data. If the file data is one channel group, the output is a
timetable; multiple channel groups are returned as a cell array of timetables, where the cell array
index corresponds to the channel group number.

data = read(mdfObj,chanList) reads all data for all channels specified in the channel list table
chanList.

data = read(mdfObj,chanGroupIndex,chanName) reads all data for the specified channel from
the MDF-file identified by the MDF-file object mdfObj.

data = read(mdfObj,chanGroupIndex,chanName,startPosition) reads data from the
position specified by startPosition.

data = read(mdfObj,chanGroupIndex,chanName,startPosition,endPosition) reads data
for the range specified from startPosition to endPosition.

data = read(___ ,'Conversion',convOpt) applies the specified conversion option to the MDF
data when reading it in. This option overrides the setting of the Conversion property of the mdf
object.

data = read(___ ,'OutputFormat',fmtType) returns data with the specified output format.

[data,time] = read(___ ,'OutputFormat','Vector') returns two vectors of channel data
and corresponding timestamps.

Examples

Read All Data from MDF-File

Read all available data from the MDF-file.

 read

11-163

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj);

Read Raw Data

Read raw data from a specified channel in the first channel group, without applying any conversion
rules.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,'Unsigned_UInt32_LE_Primary_Offset_0','Conversion','None');
data(1:4,:)

ans =

 4×1 timetable

 Time Unsigned_UInt32_LE_Primary_Offset_0
 _____ __________________________________

 0 sec 0
 1 sec 1
 2 sec 2
 3 sec 3

Read All Data from Specified Channel List

Read all available data from the MDF-file for channels specified as part of a channel list.

mdfObj = mdf('MDFFile.mf4');
chanList = channelList(mdfObj) % Channel table
data = read(mdfObj,chanList(1:3,:)); % First 3 channels

Read All Data from Multiple Channels

Read all available data from the MDF-file for specified channels.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'});

Read Range of Data from Specified Index Values

Read a range of data from the MDF-file using indexing for startPosition and endPosition to
specify the data range.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'},1,10);

11 Functions

11-164

Read Range of Data from Specified Time Values

Read a range of data from the MDF-file using time values for startPosition and endPosition to
specify the data range.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'},seconds(5.5),seconds(7.3));

Read All Data in Vector Format

Read all available data from the MDF-file, returning data and time vectors.

mdfObj = mdf('MDFFile.mf4');
[data,time] = read(mdfObj,1,'Channel1','OutputFormat','Vector');

Read All Data in Time Series Format

Read all available data from the MDF-file, returning time series data.

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,'Channel1','OutputFormat','TimeSeries');

Read Data from Channel List Entry

Read data from a channel identified by the channelList function.

Get list of channels and display their names and group numbers.

mdfObj = mdf('File05.mf4');
chlist = channelList(mdfObj);
chlist(1:2,1:2) % Display 2 channels, 2 columns

 2×2 table

 ChannelName ChannelGroupNumber
 ____________________________________ __________________

 "Float_32_LE_Offset_64" 2
 "Float_64_LE_Primary_Offset_0" 2

Read data from the first channel in the list.

data = read(mdfObj,chlist{1,2},chlist{1,1});
data(1:5,:)

 5×1 timetable

 Time Float_32_LE_Offset_64
 ________ _____________________

 0 sec 5
 0.01 sec 5.1
 0.02 sec 5.2

 read

11-165

 0.03 sec 5.3
 0.04 sec 5.4

Input Arguments
mdfObj — MDF-file
MDF-file object

MDF-file, specified as an MDF-file object.
Example: mdf('MDFFile.mf4')

chanList — List of channels
table

List of channels, specified as a table in the format returned by the channelList function.
Example: channelList()
Data Types: table

chanGroupIndex — Index of the channel group
numeric value

Index of channel group, specified as a numeric value that identifies the channel group from which to
read.
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

chanName — Name of channel
char vector | string

Name of channel, specified as a character vector, string, or array. chanName identifies the name of a
channel in the channel group. Use a cell array of character vectors or array of string to identify
multiple channels.
Example: 'Channel1'
Data Types: char | string | cell

startPosition — First position of channel data
numeric value | duration

First position of channel data, specified as a numeric value or duration. The startPosition option
specifies the first position from which to read channel data. Provide a numeric value to specify an
index position; use a duration to specify a time position. If only startPosition is provided without
the endPosition option, the data value at that location is returned. When used with endPosition
to specify a range, the function returns data from the startPosition (inclusive) to the
endPosition (noninclusive).
Example: 1
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
duration

endPosition — Last position of channel data range
numeric value | duration

11 Functions

11-166

Last position of channel data range, specified as a numeric value or duration. The endPosition
option specifies the last position for reading a range of channel data. Provide both the
startPosition and endPosition to specify retrieval of a range of data. The function returns up to
but not including endPosition when reading a range. Provide a numeric value to specify an index
position; use a duration to specify a time position.
Example: 1000
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
duration

fmtType — Format for output data
'Timetable' (default) | 'Vector' | 'TimeSeries'

Format for output data, specified as a character vector or string. This option formats the output
according to the following table.

OutputFormat Description
'Timetable' Return a timetable from one or more channels into one output variable.

This is the only format allowed when reading from multiple channels at the
same time. (Default.)

Note: The timetable format includes columns for the MDF channels.
Because the column titles must be valid MATLAB identifiers, they might
not be exactly the same as those values in the MDF object ChannelNames
property. The column headers are derived from the property using the
function matlab.lang.makeValidName. The original channel names are
available in the VariableDescriptions property of the timetable
object.

'Vector' Return a vector of numeric data values, and optionally a vector of time
values from one channel. Use one output variable to return only data, or
two output variables to return both data and time vectors.

'TimeSeries' Return a time series of data from one channel.

Example: 'Vector'
Data Types: char | string

convOpt — Conversion option for MDF-file data
'Numeric' (default) | 'All' | 'None'

Conversion option for MDF-file data, specified as 'Numeric', 'All', or 'None'. The default uses
the value specified in the Conversion property of the mdf object.

• 'Numeric' — Apply only numeric conversion rules (CC_Type 1-6). Data with non-numeric
conversion rules is imported as raw, unconverted values.

• 'None' — Do not apply any conversion rules. All data is imported as raw data.
• 'All' — Apply all numeric and text conversion rules (CC_Type 1-10).

Example: 'All'
Data Types: char | string

 read

11-167

Output Arguments
data — Channel data
timetable (default) | double | time series | cell array

Channel data, returned as vector of doubles, a time series, a timetable, or cell array of timetables,
according to the 'OutputFormat' option setting and the number of channel groups.

time — Channel data times
double

Channel data times, returned as a vector of double elements. The time vector is returned only when
the 'OutputFormat' is set to 'Vector'.

See Also
Functions
mdf | saveAttachment | mdfVisualize | mdfInfo | mdfSort | channelList

Topics
“Get Started with MDF-Files” on page 14-79
“Read Data from MDF-Files” on page 14-83
“Time Series”
“Represent Dates and Times in MATLAB”
“Tables”

Introduced in R2016b

11 Functions

11-168

read
Package: matlab.io.datastore

Read data in MDF datastore

Syntax
data = read(mdfds)
[data,info] = read(mdfds)

Description
data = read(mdfds) returns data from the MDF datastore mdfds into the timetable data.

The read function returns a subset of data from the datastore. The size of the subset is determined
by the ReadSize property of the datastore object. On the first call, read starts reading from the
beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous
call. Use reset to read from the beginning again.

[data,info] = read(mdfds) also returns to the output argument info information, including
metadata, about the extracted data.

Examples

Read Datastore by Files

Read data from an MDF datastore one file at a time.

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.ReadSize = 'file';
data = read(mdfds);

Read the second file and view information about the data.
[data2,info2] = read(mdfds);
info2

 struct with fields:

 Filename: 'CANape2.MF4'
 FileSize: 57592
 MDFFileProperties: [1×1 struct]

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

 read

11-169

Output Arguments
data — Output data
timetable

Output data, returned as a timetable of MDF records.

info — Information about data
structure array

Information about data, returned as a structure array with the following fields:

Filename
FileSize
MDFFileProperties

See Also
Functions
mdfDatastore | readall | preview | reset | hasdata

Topics
“Get Started with MDF Datastore” on page 14-88

Introduced in R2017b

11 Functions

11-170

readall
Package: matlab.io.datastore

Read all data in MDF datastore

Syntax
data = readall(mdfds)
data = readall(mdfds,"UseParallel",true)

Description
data = readall(mdfds) reads all the data in the datastore specified by mdfds and returns it to
timetable data.

After the readall function returns all the data, it resets mdfds to point to the beginning of the
datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

data = readall(mdfds,"UseParallel",true) specifies to use a parallel pool to read all of the
data. By default, the "UseParallel" option is false. The choice of pool depends on the following
conditions:

• If you already have a parallel pool running, that pool is used.
• If your parallel preference settings allow a pool to automatically start, this syntax will start one,

using the default cluster.
• If no pool is running and one cannot automatically start, this syntax does not use parallel

functionality.

Examples

Read All Data in Datastore

Read all the data from a multiple file MDF datastore into a timetable.

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
data = readall(mdfds);

Read All Data in Datastore

Use a parallel pool to read all the data from the datastore into a timetable.

 readall

11-171

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
data = readall(mdfds,"UseParallel",true);

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

Output Arguments
data — Output data
timetable

Output data, returned as a timetable of MDF records.

See Also
Functions
mdfDatastore | read | preview | reset | hasdata

Topics
“Get Started with MDF Datastore” on page 14-88

Introduced in R2017b

11 Functions

11-172

readAxis
Read and scale specified axis value from direct memory

Syntax
value = readAxis(chanObj,axis)

Description
value = readAxis(chanObj,axis) reads and scales a value for the specified axis through the
XCP channel object chanObj. This action performs a direct read from memory on the server module.

Examples

Read Value from XCP Channel Axis

Read the value from an XCP channel axis, identifying the axis by name.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
value = readAxis(chanObj,'pedal_position');

Alternatively, create an axis object and read its value.

axisObj = a2lObj.AxisXs('pedal_position');
value = readAxis(chanObj,axisObj);

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

axis — XCP channel axis
axis object | char

XCP channel axis, specified as a character vector or axis object.
Example: 'pedal_position'
Data Types: char

Output Arguments
value — Value from axis read
axis value

 readAxis

11-173

Value from axis read, returned as type supported by the axis.

See Also
Functions
writeAxis | readCharacteristic | writeCharacteristic | readMeasurement |
writeMeasurement

Introduced in R2018a

11 Functions

11-174

readCharacteristic
Read and scale specified axis value from direct memory

Syntax
value = readCharacteristic(chanObj,characteristic)

Description
value = readCharacteristic(chanObj,characteristic) reads and scales a value for the
specified characteristic through the XCP channel object chanObj. This action performs a direct
read from memory on the server module.

Examples

Read Value from XCP Channel Characteristic

Read the value from an XCP channel characteristic, identifying the characteristic by name.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
value = readCharacteristic(chanObj,'torque_demand');

Alternatively, create a characteristic object and read its value.

charObj = a2lObj.CharacteristicInfo('torque_demand');
value = readCharacteristic(chanObj,charObj);

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

characteristic — XCP channel characteristic
characteristic object | char

XCP channel characteristic, specified as a character vector or characteristic object.
Example: 'torque_demand'
Data Types: char

 readCharacteristic

11-175

Output Arguments
value — Value from characteristic read
characteristic value

Value from characteristic read, returned as a type supported by the characteristic.

See Also
Functions
readAxis | writeAxis | writeCharacteristic | readMeasurement | writeMeasurement

Introduced in R2018a

11 Functions

11-176

readDAQ
Read scaled samples of specified measurement from DAQ list

Syntax
value = readDAQ(xcpch,measurementName)
value = readDAQ(xcpch,measurementName,count)

Description
value = readDAQ(xcpch,measurementName) reads and scales all acquired DAQ list data from
the XCP channel object xcpch, for the specified measurementName, and stores the results in the
variable value. If the measurement has no data, the function returns an empty value.

value = readDAQ(xcpch,measurementName,count) reads the quantity of data specified by
count. If fewer than count samples are available, it returns only those.

Examples

Acquire Data from DAQ List

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and acquire 10 data values, then all data.

a2lObj = xcpA2L('myFile.a2l');
channelObj = xcpChannel(a2lObj,'CAN','Vector','CANcaseXL 1',1);
connect(channelObj);
createMeasurementList(channelObj,'DAQ','Event1','Measurement1');
startMeasurement(channelObj);
data = readDAQ(channelObj,'Measurement1',10);
data_all = readDAQ(channelObj,'Measurement1');

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

count — Number of samples to read
numeric value

 readDAQ

11-177

Number of samples to read, specified as a numeric value, for the specified measurement name. If the
number of samples in the measurement is less than the specified count, only the available number of
samples are returned.

Output Arguments
value — Values from specified measurement
numeric array

Values from the specified measurement, returned as a numeric array.

See Also
readSingleValue

Introduced in R2018b

11 Functions

11-178

readDAQListData
Read samples of specified measurement from DAQ list

Syntax
value = readDAQListData(xcpch,measurementName)
value = readDAQListData(xcpch,measurementName,count)

Description
value = readDAQListData(xcpch,measurementName) reads all acquired DAQ list data from the
XCP channel object xcpch, for the specified measurementName, and stores the results in the
variable value. If the measurement has no data, the function returns an empty value.

value = readDAQListData(xcpch,measurementName,count) reads the quantity of data
specified by count. If fewer than count samples are available, it returns only those.

Examples

Acquire Data for Triangle Measurement in a DAQ List

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and acquire data from a '100ms' events 'Triangle' measurement.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcp.A2L('XCPSIM.a2l')
xcpch = xcp.Channel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the channel to the server.

connect(xcpch)

Create a measurement list with a '100ms' event and 'PMW', 'PWMFiltered', and 'Triangle'
measurements.
createMeasurementList(xcpch,'DAQ','100ms',{'PMW','PWMFiltered','Triangle'})

Start the measurement.

startMeasurement(xcpch)

Acquire data for the 'Triangle' measurement for 5 counts.

value = readDAQListData(xcpch,'Triangle',5)

 readDAQListData

11-179

value =

 -50 -50 -50 -50 -50

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

count — Number of samples to read
numeric value

Number of samples to read, specified as a numeric value, for the specified measurement name. If the
number of samples in the measurement is less than the specified count, only the available number of
samples are returned.

Output Arguments
value — Values from specified measurement
numeric array

Values from the specified measurement, returned as a numeric array.

See Also
readSingleValue

Topics
“Acquire Measurement Data via Dynamic DAQ Lists” on page 6-9

Introduced in R2013a

11 Functions

11-180

readMeasurement
Read and scale specified measurement value from direct memory

Syntax
value = readMeasurement(chanObj,measurement)

Description
value = readMeasurement(chanObj,measurement) reads and scales a value for the specified
measurement through the XCP channel object chanObj. This action performs a direct read from
memory on the server module.

Examples

Read Value from XCP Channel Measurement

Read the value from an XCP channel measurement, identifying the measurement by name.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
value = readMeasurement(chanObj,'limit')

 100

Alternatively, create a measurement object and read its value.

measObj = a2lObj.MeasurementInfo('limit');
value = readMeasurement(chanObj,measObj)

 100

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

measurement — XCP channel measurement
measurement object | char

XCP channel measurement, specified as a character vector or measurement object.
Example: 'limit'
Data Types: char

 readMeasurement

11-181

Output Arguments
value — Value from measurement read
measurement value

Value from measurement read, returned as a type supported by the measurement.

See Also
Functions
readAxis | writeAxis | readCharacteristic | writeCharacteristic | writeMeasurement

Topics
“Read XCP Measurements with Direct Acquisition” on page 14-265

Introduced in R2018a

11 Functions

11-182

readSingleValue
Read single sample of specified measurement from memory

Syntax
value = readSingleValue(xcpch,'measurementName')

Description
value = readSingleValue(xcpch,'measurementName') acquires a single value for the
specified measurement through the configured XCP channel and stores it in a variable for later use.
The values are read directly from memory.

Examples

Acquire a Single Value for Triangle Measurement

Read a single value from a '100ms' event 'Triangle' measurement.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the channel to the server module.

connect(xcpch)

Acquire data for the 'Triangle' measurement.

value = readSingleValue(xcpch,'Triangle')

value =

 14

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.

 readSingleValue

11-183

Data Types: char | string

Output Arguments
value — Value of the measurement
numeric value

Value of the selected measurement, returned as a numeric value.

See Also
readDAQListData

Introduced in R2013a

11 Functions

11-184

receive
Receive messages from CAN bus

Syntax
message = receive(canch,messagesrequested,'OutputFormat','timetable')
message = receive(canch,messagesrequested)

Description
message = receive(canch,messagesrequested,'OutputFormat','timetable') returns a
timetable of CAN messages received on the CAN channel canch. The number of messages returned
is less than or equal to messagesrequested. If fewer messages are available than
messagesrequested specifies, the function returns the currently available messages. If no
messages are available, the function returns an empty array. If messagesrequested is Inf, the
function returns all available messages.

To understand the elements of a message, refer to canMessage.

Specifying the 'OutputFormat' option value of 'timetable' results in a timetable of messages.
This output format is recommended for optimal performance and representation of CAN messages
within MATLAB.

message = receive(canch,messagesrequested) returns an array of CAN message objects
instead of a timetable if the channel ProtocolMode is 'CAN'.

Note If the channel ProtocolMode is 'CAN FD' the receive function returns a timetable, whether
you specify an 'OutputFormat' or not.

Examples

Receive CAN Messages

You can receive CAN messages as a timetable or as an array of message objects.

Receive all available messages as a timetable.

canch = canChannel('Vector','CANCaseXL 1',1);
start(canch)
message = receive(canch,Inf,'OutputFormat','timetable');

Receive up to five messages as an array of message objects.

 receive

11-185

message = receive(canch,5);

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the channel by which you access the CAN
bus.
Example: canChannel

messagesrequested — Maximum number of messages to receive
numeric value | Inf

Maximum number of messages to receive, specified as a positive numeric value or Inf.
Example: Inf
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
message — CAN messages
timetable | CAN message object array

CAN messages from the channel, returned as a timetable of messages or an array of CAN message
objects.

See Also
Functions
canChannel | canMessage | transmit

Introduced in R2009a

11 Functions

11-186

receive
Package: j1939

Receive parameter groups from J1939 bus

Syntax
pgrp = receive(chan,count)

Description
pgrp = receive(chan,count) receives parameter groups from the bus via channel chan. The
number of received parameter groups is limited to the value of count.

Examples

Receive Parameter Groups from Bus

Receive all the available parameter groups from the bus by specifying a count of Inf.

db = canDatabase('MyDatabase.dbc')
chan = j1939Channel(db,'Vector','CANCaseXL 1',1)
start(chan)
pgrp = receive(chan,Inf)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

count — Maximum number of parameter groups
double

Maximum number of parameter groups to receive, specified as a double. count must be a positive
value, or Inf to specify all available parameter groups.
Data Types: double

Output Arguments
pgrp — J1939 parameter groups
timetable of parameter groups

J1939 parameter groups, returned as a timetable.

 receive

11-187

See Also
Functions
j1939Channel | start | transmit | j1939ParameterGroupTimetable

Introduced in R2015b

11 Functions

11-188

replay
Retransmit messages from CAN bus

Syntax
replay(canch,message)

Description
replay(canch,message) retransmits the message or messages message on the channel canch,
based on the relative differences of their timestamps. The replay function also replays messages from
MATLAB to Simulink.

To understand the elements of a message, refer to canMessage.

Examples

Replay Messages on CAN Channel

Use a loopback connection between two channels, so that:

• The first channel transmits messages 2 seconds apart.
• The second channel receives them.
• The replay function retransmits the messages with the original delay.

The timestamp differentials between messages in the two receive arrays, msgRx1 and msgRx2, are
equal.
ch1 = canChannel('Vector','CANcaseXL 1',1);
ch2 = canChannel('Vector','CANcaseXL 1',2);
start(ch1)
start(ch2)
msgTx1 = canMessage(500,false,8);
msgTx2 = canMessage(750,false,8);

% The first channel transmits messages 2 seconds apart.
transmit(ch1,msgTx1)
pause(2)
transmit(ch1,msgTx2)
%The second channel receives them
msgRx1 = receive(ch2,Inf);

% The replay function retransmits the messages with the original delay.
replay(ch2,msgRx1)
pause(2)
msgRx2 = receive(ch1,Inf);

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, on which to retransmit.

 replay

11-189

Example: canChannel('NI','CAN1')

message — Messages to replay
array of message objects

Messages to replay, specified as an array of message objects.

See Also
Functions
canMessage | transmit

Introduced in R2009a

11 Functions

11-190

reset
Package: matlab.io.datastore

Reset MDF datastore to initial state

Syntax
reset(mdfds)

Description
reset(mdfds) resets the MDF datastore specified by mdfds to its initial read state, where no data
has been read from it. Resetting allows your to reread from the same datastore.

Examples

Reset MDF Datastore

Reset an MDF datastore so that you can read from it again.

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','data','CANape.MF4'));
data = read(mdfds);
reset(mdfds);
data = read(mdfds);

Input Arguments
mdfds — MDF datastore
MDF datastore object

MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

See Also
Functions
mdfDatastore | read | hasdata

Introduced in R2017b

 reset

11-191

saveAttachment
Save attachment from MDF-file

Syntax
saveAttachment(mdfObj,AttachmentName)
saveAttachment(mdfObj,AttachmentName,DestFile)

Description
saveAttachment(mdfObj,AttachmentName) saves the specified attachment from the MDF-file to
the current MATLAB working folder. The attachment is saved with its existing name.

saveAttachment(mdfObj,AttachmentName,DestFile) saves the specified attachment from the
MDF-file to the given destination. You can specify relative or absolute paths to place the attachment
in a specific folder.

Examples

Save Attachment with Original Name

Save an MDF-file attachment with its original name in the current folder.

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext')

Save Attachment with New Name

Save an MDF-file attachment with a new name in the current folder.

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','MyFile.ext')

Save Attachment in Parent Folder

Save an MDF-file attachment in a folder specified with a relative path name, in this case in the parent
of the current folder.

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','..\MyFile.ext')

Save Attachment in Specified Folder

This example saves an MDF-file attachment using an absolute path name.

11 Functions

11-192

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','C:\MyDir\MyFile.ext')

Input Arguments
mdfObj — MDF-file
MDF-file object

MDF-file, specified as an MDF-file object.
Example: mdf('MDFFile.mf4')

AttachmentName — MDF-file attachment name
char vector | string

MDF-file attachment name, specified as a character vector or string. The name of the attachment is
available in the Name field of the MDF-file object Attachment property.
Example: 'file1.dbc'
Data Types: char | string

DestFile — Destination file name for the saved attachment
existing attachment name (default) | char vector | string

Destination file name for the saved attachment, specified as a character vector or string. The
specified destination can include an absolute or relative path, otherwise the attachment is saved in
the current folder.
Example: 'MyFile.ext'
Data Types: char | string

See Also
Functions
mdf | read

Introduced in R2016b

 saveAttachment

11-193

setValue
Set instance value in CDFX object

Syntax
setValue(cdfxObj,instName,iVal)
setValue(cdfxObj,instName,sysName,iVal)

Description
setValue(cdfxObj,instName,iVal) sets the value of the unique instance whose ShortName is
specified by instName to iVal. If multiple instances share the same ShortName, the function
returns an error.

setValue(cdfxObj,instName,sysName,iVal) sets the value of the instance whose ShortName
is specified by instName and is contained in the system specified by sysName.

Note setValue does not write the instance value in the original CDFX-file. Use the write function
to update the CDFX-file or to create a new file.

Examples

Set Value of Instance

Create an asam.cdfx object and set the value of its VALUE_NUMERIC instance.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
setValue(cdfxObj,'VALUE_NUMERIC',55)

Read back the value to verify it.

iVal = getValue(cdfxObj,'VALUE_NUMERIC')

iVal =

 55

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

instName — Instance name
char | string

11 Functions

11-194

Instance name, specified as a character vector or string.
Example: 'NUMERIC_VALUE'
Data Types: char | string

sysName — Parent system name
char | string

Parent system name, specified as a character vector or string.
Example: 'System2'
Data Types: char | string

iVal — Instance value
instance type

Instance value, specified as the type supported by the instance.
Example: 55

See Also
Functions
cdfx | instanceList | systemList | getValue | write

Introduced in R2019a

 setValue

11-195

signalInfo
Information about signals in CAN message

Syntax
SigInfo = signalInfo(candb,msgName)
SigInfo = signalInfo(candb,id,extended)
SigInfo = signalInfo(candb,id,extended,signalName)

Description
SigInfo = signalInfo(candb,msgName) returns information about the signals in the specified
CAN message msgName in the specified database candb.

SigInfo = signalInfo(candb,id,extended) returns information about the signals in the
message with the specified standard or extended ID id in the specified database candb.

SigInfo = signalInfo(candb,id,extended,signalName) returns information about the
specified signal 'signalName' in the message with the specified standard or extended ID id in the
specified database candb.

Examples

Use Message Name to Get Information

Get signal information from the message 'Battery_Voltage'.

SigInfo = signalInfo(candb,'Battery_Voltage');

Use Message ID to Get Information

Get signal information from the message with ID 196608.

SigInfo = signalInfo(candb,196608,true);

Use Signal Name to Get Information

Get information from the signal named 'BatVlt' from message 196608.

SigInfo = signalInfo(candb,196608,true,'BatVlt');

Input Arguments
candb — CAN database
CAN database object

11 Functions

11-196

CAN database, specified as a CAN database object, that contains the signals that you want
information about.
Example: candb = canDatabase('C:\Database.dbc')

msgName — Message name
character vector | string

Message name, specified as a character vector or string. Provide the name of the message that
contains the signals that you want information about.
Example: 'Battery_Voltage'
Data Types: char | string

id — Message identifier
numeric value

Message identifier, specified as a numeric value. Provide the numeric identifier of the specified
message that contains the signals you want information about.
Example: 196608

extended — Extended message indicator
true | false

Extended message indicator, specified as true or false. Indicate whether the message ID is
standard or extended type. Use the logical value true if extended, or false if standard.
Example: true
Data Types: logical

signalName — Name of signal
char vector | string

Name of the signal, specified as a character vector or string. Provide the name of the specific signal
that you want information about.
Example: 'BatVlt'
Data Types: char | string

Output Arguments
SigInfo — Signal information
struct or array of struct

Signal information, returned as a structure or array of structures.
Data Types: struct

See Also
Functions
canDatabase | canMessage | messageInfo

 signalInfo

11-197

Properties
can.Database Properties

Introduced in R2009a

11 Functions

11-198

start
Set CAN channel online

Syntax
start(canch)

Description
start(canch) starts the CAN channel canch on the CAN bus to send and receive messages. The
CAN channel remains online until:

• You call stop on this channel.
• You clear the channel from the workspace.

Note Before you can start a channel to transmit or receive CAN FD messages, you must configure its
bus speed with configBusSpeed.

Examples

Start a CAN Channel

Start a virtual device CAN channel.

canch = canChannel('MathWorks','Virtual 1',1);
start(canch)

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, that you want to start.
Example: canChannel('NI','CAN1')

See Also
Functions
canChannel | stop | configBusSpeed

Introduced in R2009a

 start

11-199

start
Package: j1939

Start channel connection to J1939 bus

Syntax
start(chan)

Description
start(chan) activates the channel chan on a J1939 bus. The channel remains activated until stop
is called or it is cleared from the memory.

Examples

Start J1939 Channel

Activate a channel on a J1939 bus.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
start(chan)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

See Also
Functions
j1939Channel | stop

Introduced in R2015b

11 Functions

11-200

startMeasurement
Start configured DAQ and STIM lists

Syntax
startMeasurement(xcpch)

Description
startMeasurement(xcpch) starts all configured data acquisition and stimulation lists on the
specified XCP channel. When you start the measurement, configured DAQ lists begin acquiring data
values from the server module and STIM lists begin transmitting data values to the server module.

Examples

Start a DAQ Measurement

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and start measuring data.

a2l = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2l, 'CAN', 'Vector', 'Virtual 1', 1),

xcpch =

 Channel with properties:

 ServerName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyCallbackFcn: []
 KeyValue: []

Connect the channel to the server module.

connect(xcpch)

Set up a data acquisition measurement list with the ‘10 ms’ event and 'Bitslice' measurement.

createMeasurementList(xcpch, 'DAQ', '10 ms', 'BitSlice')

Start your measurement.

startMeasurement(xcpch);

Start a STIM Measurement

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and start measuring data.

 startMeasurement

11-201

a2l = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2l,'CAN','Vector','Virtual 1',1)
xcpch =

 Channel with properties:

 ServerName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyCallbackFcn: []
 KeyValue: []

Connect the channel to the server module.

connect(xcpch)

Set up a data stimulation measurement list with the ‘100ms’ event and 'Bitslice0',
'PWMFiletered', and 'Triangle'measurements.
createMeasurementList(xcpch,'STIM','100ms',{'BitSlice0','PWMFiletered','Triangle'})

Start your measurement.

startMeasurement(xcpch);

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

See Also
stopMeasurement | xcpChannel

Introduced in R2013a

11 Functions

11-202

stop
Set CAN channel offline

Syntax
stop(canch)

Description
stop(canch) stops the CAN channel canch on the CAN bus. The CAN channel also stops running
when you clear canch from the workspace.

Examples

Stop a CAN Channel

Stop a virtual device CAN channel.

canch = canChannel('MathWorks','Virtual 1',1);
start(canch)
stop(canch)

Input Arguments
canch — CAN device channel
CAN channel object

CAN device channel, specified as a CAN channel object, that you want to stop.
Example: canChannel('NI','CAN1')

See Also
canChannel | start

Introduced in R2009a

 stop

11-203

stop
Package: j1939

Stop channel connection to J1939 bus

Syntax
stop(chan)

Description
stop(chan) deactivates the channel chan on a J1939 bus. The channel also deactivates when it is
cleared from the memory.

Examples

Stop J1939 Channel

Deactivate a channel on a J1939 bus.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
start(chan)

stop(chan)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

See Also
Functions
j1939Channel | start

Introduced in R2015b

11 Functions

11-204

stopMeasurement
Stop configured DAQ and STIM lists

Syntax
stopMeasurement(xcpch)

Description
stopMeasurement(xcpch) stops all configured data acquisition and stimulation lists on the
specified XCP channel. When you stop the measurement, configured DAQ lists stop acquiring data
values from the server module and STIM lists stop transmitting data values to the server module.

Examples

Stop a DAQ Measurement

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a DAQ
measurement list and start and stop measuring data.

a2l = xcp2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1)

xcpch =

 Channel with properties:

 ServerName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyCallbackFcn: []
 KeyValue: []

Connect the channel to the server module.

connect(xcpch)

Set up a data acquisition measurement list with the '10 ms' event and 'Bitslice' measurement
and start your measurement.

createMeasurementList(xcpch,'DAQ','10 ms','BitSlice')
startMeasurement(xcpch);

Stop your measurement.

 stopMeasurement

11-205

stopMeasurement(xcpch);

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

See Also
startMeasurement | xcpChannel

Introduced in R2013a

11 Functions

11-206

systemList
ECU systems in the CDFX object

Syntax
sList = systemList(cdfxObj)
sList = systemList(cdfxObj,sysName)

Description
sList = systemList(cdfxObj) returns a table listing every electronic control unit (ECU) system
in the CDFX object.

sList = systemList(cdfxObj,sysName) returns a table listing every ECU system in the CDFX
object whose ShortName matches SysName.

Examples

View CDFX Object Systems

Create an asam.cdfx object and view its ECU systems.

List all systems.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
sList = systemList(cdfxObj)

sList =

 1×3 table

 ShortName Instances Metadata
 _________ _____________ ________

 "System1" [1×16 string] ""

Match a specified system.

sList = systemList(cdfxObj,'System1');

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

sysName — Parent system name
string

 systemList

11-207

Parent system name, specified as a string.
Example: "System2"
Data Types: string

Output Arguments
sList — ECU system list
table

ECU system list, returned as a table.

See Also
Functions
cdfx | instanceList | getValue | setValue | write

Introduced in R2019a

11 Functions

11-208

transmit
Send CAN messages to CAN bus

Syntax
transmit(canch,message)

Description
transmit(canch,message) sends the message or array of messages onto the bus via the CAN
channel.

For more information on the elements of a message, see canMessage.

Note The transmit function ignores the Timestamp property and the Error property.

CAN is a peer-to-peer network, so when transmitting messages on a physical bus at least one other
node must be present to properly acknowledge the message. Without another node, the transmission
will fail as an error frame, and the device will continually retry to transmit.

Examples
Transmit a CAN Message

Define a CAN message and transmit it to the CAN bus.

message = canMessage (250,false,8);
message.Data = ([45 213 53 1 3 213 123 43]);
canch = canChannel('MathWorks','Virtual 1',1);
start(canch)
transmit(canch,message)

Transmit an Array of Messages

Transmit an array of three CAN messages.

transmit(canch,[message0,message1,message2])

Transmit Messages on a Remote Frame

Transmit a CAN message on a remote frame, using the message Remote property.

message = canMessage(250,false,8);
message.Data = ([45 213 53 1 3 213 123 43]);
message.Remote = true;
canch = canChannel('MathWorks','Virtual 1',1);
start(canch)
transmit(canch,message)

 transmit

11-209

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the channel by which you access the CAN
bus.

message — Message to transmit
CAN message object or array of objects

Message to transmit, specified as a CAN message object or array of message objects. These messages
are transmitted via a CAN channel to the bus.

See Also
Functions
canChannel | canMessage | receive

Introduced in R2009a

11 Functions

11-210

transmit
Package: j1939

Send parameter groups via channel to J1939 bus

Syntax
transmit(chan,pgrp)

Description
transmit(chan,pgrp) sends the specified parameter groups in the array pgrp onto the J1939 bus
via the channel chan.

Examples

Send Parameter Groups onto Bus

Send the parameter group 'MyParameterGroup' to the bus.

db = canDatabase('MyDatabase.dbc');
chan = j1939Channel(db,'Vector','CANCaseXL 1',1);
start(chan)
pgrp = j1939ParameterGroup(db,'MyParameterGroup')
transmit(chan,pgrp)

Input Arguments
chan — J1939 channel
channel object

J1939 channel, specified as a channel object. Use thej1939Channel function to create and define
the channel.

pgrp — J1939 parameter groups
array of ParameterGroup objects

J1939 parameter groups, specified as an array of ParameterGroup objects. Use
thej1939ParameterGroup function to create and define the ParameterGroup objects.

See Also
Functions
j1939Channel | j1939ParameterGroup | start | receive

Introduced in R2015b

 transmit

11-211

transmitConfiguration
Display messages configured for automatic transmission

Syntax
transmitConfiguration(canch)

Description
transmitConfiguration(canch) displays information about all messages in the CAN channel,
canch, configured for periodic transmit or event-based transmit.

For more information on periodic transmit of messages, refer to transmitPeriodic.

For more information on event-based transmit of messages, refer to transmitEvent.

Examples

Configure and View Message Transmit Settings

Create two messages with different transmit settings, then view those settings.

Create a CAN channel with two messages.

canch = canChannel('Vector','Virtual 1',1);
msg1 = canMessage(500,false,8);
msg2 = canMessage(750,false,8);

Configure the transmit settings for msg1 and msg2.

transmitEvent(canch,msg1,'On');
transmitPeriodic(canch,msg2,'On',1);

Display the transmit configuration for the messages on canch .

transmitConfiguration(canch)

Periodic Messages

ID Extended Name Data Rate (seconds)
--- -------- ---- ---------------- --------------
750 false 0 0 0 0 0 0 0 0 1.000000

Event Messages

ID Extended Name Data

11 Functions

11-212

--- -------- ---- ----------------
500 false 0 0 0 0 0 0 0 0

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the channel by which you access the CAN
bus for periodic or event-based transmission.

See Also
Functions
canChannel | canMessage | transmitEvent | transmitPeriodic

Introduced in R2010b

 transmitConfiguration

11-213

transmitEvent
Configure messages for event-based transmission

Syntax
transmitEvent(canch,msg,state)

Description
transmitEvent(canch,msg,state) enables or disables an event-based transmit of the CAN
message, msg, on the channel, according to the state argument of 'On' or 'Off'. A typical event
that triggers a transmission is a change to the message Data property.

Examples

Enable an Event-Based Message

Configure a channel with an event-based message.

Construct a CAN channel and configure a message on the channel.

canch = canChannel('MathWorks','Virtual 1',1);
msg = canMessage(200,false,4);

Enable the message for event-based transmit, start the channel, and pack the message to trigger the
event-based transmit.

transmitEvent(canch,msg,'On');
start(canch);
pack(msg,int32(1000),0,32,'LittleEndian')

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the channel by which you access the CAN
bus, and the channel on which the specified message is enabled for event-based transmit.

msg — Message to transmit
CAN message object or array of objects

Message to transmit, specified as a CAN message object or array of message objects. This is the
message enabled for event-based transmission on the specified CAN channel.

state — Enable event-based transmission
'On' | 'Off'

Enable event-based transmission, specified as 'On' or 'Off'.

11 Functions

11-214

Example: 'On'
Data Types: char | string

See Also
Functions
canChannel | canMessage | transmitConfiguration | transmitPeriodic

Introduced in R2010b

 transmitEvent

11-215

transmitPeriodic
Configure messages for periodic transmission

Syntax
transmitPeriodic(canch,msg,'On',period)
transmitPeriodic(canch,msg,'Off')

Description
transmitPeriodic(canch,msg,'On',period) enables periodic transmit of the message, msg, on
the channel, canch, to transmit at the specified period, period.

You can enable and disable periodic transmit even when the channel is running, allowing you to make
changes to the state of the channel without stopping it.

transmitPeriodic(canch,msg,'Off') disables periodic transmission of the message, msg.

Examples

Transmit a Message Periodically

Configure a channel to transmit messages periodically.

Construct a CAN channel and message.

canch = canChannel('MathWorks','Virtual 1',1);
msg = canMessage(500,false,4);

Enable the message for periodic transmission on the channel, with a period of 1 second. Start the
channel, and pack the message you want to send periodically.

transmitPeriodic(canch,msg,'On',1);
start(canch);
pack(msg,int32(1000),0,32,'LittleEndian')

Input Arguments
canch — CAN channel
CAN channel object

CAN channel, specified as a CAN channel object. This is the CAN channel for which you are
controlling periodic transmission.

msg — Message to transmit
CAN message object or array of objects

Message to transmit, specified as a CAN message object or array of message objects. This is the
message enabled for periodic transmission on the specified CAN channel.

11 Functions

11-216

period — Period of transmissions
0.500 (default) | numeric value

Period of transmissions, specified in seconds as a numeric value. This argument is optional, with a
default of 0.5 seconds.
Example: 1.0
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
Functions
canChannel | canMessage | transmitConfiguration | transmitEvent

Introduced in R2010b

 transmitPeriodic

11-217

unpack
Unpack signal data from CAN message

Syntax
value = unpack(message,startbit,signalsize,byteorder,datatype)

Description
value = unpack(message,startbit,signalsize,byteorder,datatype) takes a set of input
parameters to unpack the signal value from the message and returns the value as output.

Examples

Unpack Data from a CAN Message

Unpack the data value from a CAN message.

Unpack a 16-bit integer value.

message = canMessage(500,false,8);
pack(message,int16(1000),0,16,'LittleEndian')
value = unpack(message,0,16,'LittleEndian','int16')

value =

 int16

 1000

Unpack a 32-bit single value.

pack(message,single(-40),0,32,'LittleEndian')
value = unpack(message,0,32,"LittleEndian",'single')

value =

 single

 -40

Unpack a 64-bit double value.

pack(message,3.14,0,64,'LittleEndian')
value = unpack(message,0,64,'LittleEndian','double')

11 Functions

11-218

value =

 3.1400

Input Arguments
message — CAN message
CAN message object

CAN message, specified as a CAN message object, from which to unpack the data.
Example: canMessage

startbit — Signal starting bit in data
single | double

Signal starting bit in the data, specified as a single or double value. This is the least significant bit
position in the signal data. Accepted values for startbit are from 0 through 63, inclusive.
Example: 0
Data Types: single | double

signalsize — Length of signal in bits
numeric value

Length of the signal in bits, specified as a numeric value. Accepted values for signalsize are from
1 through 64, inclusive.
Example: 16
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

byteorder — Signal byte order format
'LittleEndian' | 'BigEndian'

Signal byte order format, specified as 'LittleEndian' or 'BigEndian'.
Example: 'LittleEndian'
Data Types: char | string

datatype — Data type of unpacked value
char vector | string

Data type of unpacked value, specified as a character vector or string. The supported values are
'uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'single', and
'double'.
Example: 'double'
Data Types: char | string

Output Arguments
value — Value of message data
numeric value

 unpack

11-219

Value of message data, returned as a numeric value of the specified data type.

See Also
Functions
canMessage | extractAll | extractRecent | extractTime | pack

Introduced in R2009a

11 Functions

11-220

valueTableText
Look up value of table text for signal

Syntax
vtt = valueTableText(db,MsgName,SignalName,TableVal)

Description
vtt = valueTableText(db,MsgName,SignalName,TableVal) returns the text from the
specified value table for a specified message signal.

Examples

View Table Text for Signal

Create a CAN database object, and select a message and signal to retrieve their table text.

Identify a message.

db = canDatabase('J1939DB.dbc');
m = db.MessageInfo(1)

m =
 Name: 'A1'
 Comment: 'This is A1 message'
 ID: 419364350
 Extended: 1
 J1939: [1x1 struct]
 Length: 8
 Signals: {2x1 cell}
 SignalInfo: [2x1 struct]
 TxNodes: {'AerodynamicControl'}
 Attributes: {4x1 cell}
 AttributeInfo: [4x1 struct]

Select one of the message signals.

s = m.SignalInfo(2)

s =
 Name: 'EngGasSupplyPress'
 Comment: 'Gage pressure of gas supply to fuel metering device.'
 StartBit: 8
 SignalSize: 16
 ByteOrder: 'LittleEndian'
 Signed: 0
 ValueType: 'Integer'
 Class: 'uint16'
 Factor: 0.5000
 Offset: 0
 Minimum: 0
 Maximum: 3.2128e+04
 Units: 'kPa'
 ValueTable: [4x1 struct]
 Multiplexor: 0

 valueTableText

11-221

 Multiplexed: 0
 MultiplexMode: 0
 RxNodes: {'Aftertreatment_1_GasIntake'}
 Attributes: {3x1 cell}
 AttributeInfo: [3x1 struct]

Retrieve second table text for a specified signal.

vtt = valueTableText(db,m.Name,s.Name,2)

vtt =
 'pump error'

Input Arguments
db — CAN database
CAN database object

CAN database, specified as a CAN database object.
Example: db = canDatabase(_____)

MsgName — Message name
char vector | string

Message name, specified as a character vector or string. You can view available message names from
the db.Messages property.
Example: 'A1'
Data Types: char | string

SignalName — Signal name
char vector | string

Signal name, specified as a character vector or string. You can view available signal names from the
db.MessageInfo(n).Signals property.
Example: 'EngGasSupplyPress'
Data Types: char | string

TableVal — Table value
numeric value

Table value, specified as a numeric value.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
vtt — Table text
table text

Table text, returned as a character vector.

11 Functions

11-222

See Also
Functions
nodeInfo | messageInfo | signalInfo | attributeInfo | canDatabase

Properties
can.Database Properties

Introduced in R2015b

 valueTableText

11-223

viewMeasurementLists
View configured measurement lists on XCP channel

Syntax
viewMeasurementLists(xcpch)

Description
viewMeasurementLists(xcpch) shows you all configured measurement list sets for this XCP
channel.

Examples

View DAQ Measurement Lists

Create an XCP channel and configure a data acquisition measurement list, then view the configured
measurement list.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcpA2L('XCPSIM.a2l')
xcpch = xcpChannel(a2lfile, 'CAN', 'Vector', 'Virtual 1', 1)

xcpch =

 Channel with properties:

 ServerName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyCallbackFcn: []
 KeyValue: []

Connect the channel to the server module.

connect(xcpch)

Set up a data acquisition measurement list with the '10 ms' event and 'PMW' measurement.
createMeasurementList(xcpch,'DAQ','10 ms', {'BitSlice0','PWMFiltered','Triangle'});

Create another measurement list with the '100ms' event and 'PWMFiltered'and 'Triangle'
measurements.
createMeasurementList(xcpch,'DAQ','100ms', {'PWMFiltered','Triangle'});

View details of the measurement list.

viewMeasurementLists(xcpch)

DAQ List #1 using the "10 ms" event @ 0.010000 seconds and the following measurements:
 PMW

11 Functions

11-224

DAQ List #2 using the "100ms" event @ 0.100000 seconds and the following measurements:
 PWMFiltered
 Triangle

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

See Also
createMeasurementList | freeMeasurementLists

Introduced in R2013a

 viewMeasurementLists

11-225

write
Export data of CDFX object to file

Syntax
write(cdfxObj)
write(cdfxObj,CDFXfile)

Description
write(cdfxObj) exports the data contents of the asam.cdfx object to the file specified by the
Path property of the object.

write(cdfxObj,CDFXfile) exports the contents of the asam.cdfx object to the CDFX-file
specified by CDFXfile.

Examples

Write Modified Data to New CDFX-File

Create an asam.cdfx object with data from a file, modify the data in the object, and write it out to a
new file.

cdfxObj = cdfx('c:\DataFiles\AllCategories_VCD.cdfx');
setValue(cdfxObj,'VALUE_NUMERIC',55)
write(cdfxObj,'c:\DataFiles\AllCategories_NEW_VCD.cdfx')

Input Arguments
cdfxObj — CDFX-file object
asam.cdfx object

CDFX-file object, specified as an asam.cdfx object. Use the object to access the calibration data.
Example: cdfx()

CDFXfile — Calibration data format CDFX-file location
char | string

Calibration data format CDFX-file location, specified as a character vector or string. CDFXFile can
specify the file name in the current folder, or the full or relative path to the CDFX-file.
Example: 'ASAMCDFExample.cdfx'
Data Types: char | string

See Also
Functions
cdfx | instanceList | systemList | getValue | setValue

11 Functions

11-226

Introduced in R2019a

 write

11-227

writeAxis
Scale and write specified axis value to direct memory

Syntax
writeAxis(chanObj,axis,value)

Description
writeAxis(chanObj,axis,value) scales and writes a value for the specified axis through the
XCP channel object chanObj. This action performs a direct write to memory on the server module.

Examples

Write Value to XCP Channel Axis

Write a value to an XCP axis and verify the value.

Read the original value.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
axisObj = a2lObj.AxisXs('pedal_position');
value = readAxis(chanObj,axisObj)

 25

Write a new value.

newValue = 50;
writeAxis(chanObj,axisObj,newValue);

Read the value again to verify.

readAxis(chanObj,axisObj)

 50

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

axis — XCP channel axis
axis object | char

11 Functions

11-228

XCP channel axis, specified as a character vector or axis object.
Example: 'pedal_position'
Data Types: char

value — Value for axis write
axis value

Value for axis write, specified as type supported by the axis.

See Also
Functions
readAxis | readCharacteristic | writeCharacteristic | readMeasurement |
writeMeasurement

Introduced in R2018a

 writeAxis

11-229

writeCharacteristic
Scale and write specified characteristic value to direct memory

Syntax
writeCharacteristic(chanObj,characteristic,value)

Description
writeCharacteristic(chanObj,characteristic,value) scales and writes a value for the
specified characteristic through the XCP channel object chanObj. This action performs a direct
write to memory on the server module.

Examples

Write Value to an XCP Channel Characteristic

Write a value to an XCP characteristic and verify the value.

Read the original value.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
charObj = a2lObj.CharacteristicInfo('torque_demand');
value = readCharacteristic(chanObj,charObj)'

 100

Write a new value.

newValue = 200;
writeCharacteristic(chanObj,charObj,newValue');

Read the value again to verify the change.

readCharacteristic(chanObj,charObj)'

 200

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

characteristic — XCP channel characteristic
characteristic object | char

11 Functions

11-230

XCP channel characteristic, specified as a character vector or characteristic object.
Example: 'torque_demand'
Data Types: char

value — Value for characteristic write
characteristic value

Value for characteristic write, specified as a type supported by the characteristic.

See Also
Functions
readAxis | writeAxis | readCharacteristic | readMeasurement | writeMeasurement

Introduced in R2018a

 writeCharacteristic

11-231

writeMeasurement
Scale and write specified measurement value to direct memory

Syntax
writeMeasurement(chanObj,measurement,value)

Description
writeMeasurement(chanObj,measurement,value) scales and writes a value for the specified
measurement through the XCP channel object chanObj. This action performs a direct write to
memory on the server module.

Examples

Write Value to an XCP Channel Measurement

Write a value to an XCP measurement, and verify the value.

Read the original value.

a2lObj = xcpA2L('myA2Lfile.a2l');
chanObj = xcpChannel(a2lObj,'CAN','Vector','Virtual 1',1);
connect(chanObj);
measObj = a2lObj.MeasurementInfo('limit');
value = readMeasurement(chanObj,measObj)

 100

Write a new value.

newValue = 120;
writeMeasurement(chanObj,measObj,newValue);

Read the value again to verify the change.

readMeasurement(chanObj,measObj)

 120

Input Arguments
chanObj — XCP channel
channel object

XCP channel, specified as an XCP channel object.
Example: xcpChannel()

measurement — XCP channel measurement
measurement object | char

11 Functions

11-232

XCP channel measurement, specified as a character vector or measurement object.
Example: 'curve1_8_uc'
Data Types: char

value — Value for measurement write
measurement value

Value for measurement write, specified as a data type supported by the measurement.

See Also
Functions
readAxis | writeAxis | readCharacteristic | writeCharacteristic | readMeasurement

Introduced in R2018a

 writeMeasurement

11-233

writeSingleValue
Write single sample to specified measurement

Syntax
writeSingleValue(xcpch,measurementName,value)

Description
writeSingleValue(xcpch,measurementName,value) writes a single value to the specified
measurement through the configured XCP channel. The values are written directly to the memory on
the server module.

Examples

Write a single value

Create an XCP channel and write a single value for the Triangle measurement directly to memory.

Link an A2L file to your session.

a2l = xcpA2L('XCPSIM.a2l')

Create an XCP channel and connect it to the server module

xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);
connect(xcpch)

Write the value 10 to the 'Triangle' measurement.

writeSingleValue(xcpch,'Triangle',10)

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

value — Value of the measurement
numeric value

11 Functions

11-234

Value of the selected measurement, returned as a numeric value.

See Also
writeSTIMListData

Introduced in R2013a

 writeSingleValue

11-235

writeSTIM
Write scaled value of specified measurement to STIM list

Syntax
writeSTIM(xcpch,measurementName,value)

Description
writeSTIM(xcpch,measurementName,value) writes the scaled value to the specified
measurement on the XCP channel.

Examples

Write Scaled Data to a Measurement in a Stimulation List

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up a data
stimulation list and write to a specified measurement.

a2lObj = xcpA2L('myFile.a2l');
channelObj = xcpChannel(a2lObj,'CAN','Vector','CANcaseXL 1',1);
connect(channelObj);
createMeasurementList(channelObj,'STIM','Event1','Measurement1');
startMeasurement(channelObj);
writeSTIM(channelObj,'Measurement1',newValue);

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

value — Value of the measurement
numeric value

Value of the measurement, specified as a numeric value.

See Also
writeSingleValue

11 Functions

11-236

Introduced in R2018b

 writeSTIM

11-237

writeSTIMListData
Write to specified measurement

Syntax
writeSTIMListData(xcpch,measurementName,value)

Description
writeSTIMListData(xcpch,measurementName,value) writes the specified value to the
specified measurement on the XCP channel.

Examples

Write Data to a Measurement in a Stimulation List

Create an XCP channel connected to a Vector CAN device on a virtual channel. Set up data
stimulation list and write to a '100ms' event’s 'Triangle' measurement.

Create an object to parse an A2L file and connect that to an XCP channel.

a2lfile = xcp.A2L('XCPSIM.a2l')
xcpch = xcp.Channel(a2lfile,'CAN','Vector','Virtual 1',1);

Connect the channel to the server.

connect(xcpch)

Create a measurement list with the '100ms' event and 'Bitslice0', 'PWMFiltered', and
'Triangle' measurements.
createMeasurementList(xcpch,'STIM','100ms',{'BitSlice0','PWMFiltered','Triangle'});

Start the measurement.

startMeasurement(xcpch)

Write data to the 'Triangle' measurement.

writeSTIMListData(xcpch,'Triangle',10)

Input Arguments
xcpch — XCP channel
XCP channel object

XCP channel, specified as an XCP channel object created using xcpChannel. The XCP channel object
can then communicate with the specified server module defined by the A2L file.

measurementName — Name of single XCP measurement
character vector | string

11 Functions

11-238

Name of a single XCP measurement specified as a character vector or string. Make sure
measurementName matches the corresponding measurement name defined in your A2L file.
Data Types: char | string

value — Value of the measurement
numeric value

Value of the selected measurement, specified as a numeric value.

See Also
writeSingleValue

Introduced in R2013a

 writeSTIMListData

11-239

xcpA2L
Access A2L file

Syntax
a2lfile = xcpA2L(filename)

Description
a2lfile = xcpA2L(filename) creates an object that accesses an A2L file. The object can parse
the contents of the file and view events and measurement information.

Examples

Link to an A2L File

Create an A2L file object.

a2lfile = xcpA2L('XCPSIM.a2l')

a2lfile =

 A2L with properties:

 File Details
 FileName: 'XCPSIM.a2l'
 FilePath: 'c:\XCPSIM.a2l'
 ServerName: 'CPP'
 Warnings: [0×0 string]

 Parameter Details
 Events: {1×6 cell}
 EventInfo: [1×6 xcp.a2l.Event]
 Measurements: {1×45 cell}
 MeasurementInfo: [45×1 containers.Map]
 Characteristics: {1×16 cell}
 CharacteristicInfo: [16×1 containers.Map]
 AxisInfo: [1×1 containers.Map]
 RecordLayouts: [41×1 containers.Map]
 CompuMethods: [15×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [2×1 containers.Map]

 XCP Protocol Details
 ProtocolLayerInfo: [1×1 xcp.a2l.ProtocolLayer]
 DAQInfo: [1×1 xcp.a2l.DAQ]
 TransportLayerCANInfo: [1×1 xcp.a2l.XCPonCAN]
 TransportLayerUDPInfo: [1×1 xcp.a2l.XCPonIP]
 TransportLayerTCPInfo: [0×0 xcp.a2l.XCPonIP]

Input Arguments
filename — A2L file name
character vector | string

A2L file name, specified as a character vector or string. You must provide the file ending .a2l with
the name. You can also provide a partial or full path to the file with the name.
Data Types: char | string

11 Functions

11-240

Output Arguments
a2lfile — A2L file
xcp.A2L object

A2L file, returned as an xcp.A2L object, with xcp.A2L Properties.

See Also
Functions
xcpChannel | getEventInfo | getMeasurementInfo

Properties
xcp.A2L Properties

Topics
“Get Started with A2L-Files” on page 14-231
“XCP Database and Communication Workflow” on page 5-2

External Websites
ASAM MCD-2 MC Technical Content

Introduced in R2013a

 xcpA2L

11-241

https://www.asam.net/standards/detail/mcd-2-mc/wiki/#TechnicalContent

xcpChannel
Create XCP channel

Syntax
xcpch = xcpChannel(a2lFile,CANProtocol,vendor,deviceID)
xcpch = xcpChannel(a2lFile,CANProtocol,vendor,deviceID,deviceChannelIndex)
xcpch = xcpChannel(a2lFile,"TCP",IPAddr,portNmbr)
xcpch = xcpChannel(a2lFile,"UDP",IPAddr,portNmbr)
xcpch = xcpChannel(a2lFile,"TCP")
xcpch = xcpChannel(a2lFile,"UDP")

Description
xcpch = xcpChannel(a2lFile,CANProtocol,vendor,deviceID) creates a channel connected
to the CAN bus via the specified vendor and device, using the specified CANProtocol of "CAN" or
"CAN FD". The XCP channel accesses the server module via the CAN bus, parsing the attached A2L
file.

Use this syntax for vendor "PEAK-System" or "NI". With NI CAN devices, the deviceID argument
must include the interface number defined for the channel in the NI Measurement & Automation
Explorer.

Note: XCP over CAN FD is not supported for PEAK-System devices.

xcpch = xcpChannel(a2lFile,CANProtocol,vendor,deviceID,deviceChannelIndex)
creates a channel for the vendor "Vector", "Kvaser", or "MathWorks". Specify a numeric
deviceChannelIndex for the channel.

xcpch = xcpChannel(a2lFile,"TCP",IPAddr,portNmbr) or xcpch = xcpChannel(
a2lFile,"UDP",IPAddr,portNmbr) creates an XCP channel connected via Ethernet using TCP or
UDP on the specified IP address and port.

XCP communication over UDP or TCP assumes a generic Ethernet adaptor. It is not supported on
Ethernet connections of devices from specific vendors.

xcpch = xcpChannel(a2lFile,"TCP") and xcpch = xcpChannel(a2lFile,"UDP") use the
IP address and port number defined in the A2L file.

Examples

Create an XCP Channel Using a CAN Server Module

Create an XCP channel using a Vector CAN module virtual channel.

Link an A2L file to your session.

a2l = xcpA2L("XCPSIM.a2l");

Create an XCP channel.

11 Functions

11-242

xcpch = xcpChannel(a2l,"CAN","Vector","Virtual 1",1)

xcpch =

 Channel with properties:

 ServerName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'CAN'
 TransportLayerDevice: [1x1 struct]
 SeedKeyDLL: []

Create an XCP Channel for Ethernet

Create an XCP channel for TCP communication via Ethernet.

Link an A2L file to your session.

a2l = xcpA2L("XCPSIM.a2l");

Create an XCP channel.

xcpch = xcpChannel(a2l,"TCP","10.255.255.255",80)

xcpch =

 Channel with properties:

 ServerName: 'CPP'
 A2LFileName: 'XCPSIM.a2l'
 TransportLayer: 'TCP'
 TransportLayerDevice: [1×1 struct]
 SeedKeyDLL: []

Input Arguments
a2lFile — A2L file
xcp.A2L object

A2L file, specified as an xcp.A2L object, used in this connection. You can create an A2L file object
using xcpA2L.

CANProtocol — CAN protocol mode
"CAN" | "CAN FD"

CAN protocol mode, specified as "CAN" or "CAN FD".
Example: "CAN"
Data Types: char | string

vendor — Device vendor
"NI" | "Kvaser" | "Vector" | "PEAK-System" | "MathWorks"

Device vendor name, specified as a character vector or string.

 xcpChannel

11-243

Example: "Vector"
Data Types: char | string

deviceID — Device to connect to
character vector | string

Device on the interface to connect to, specified as a character vector or string.

For NI CAN devices, this must include the interface number for the device channel, defined in the NI
Measurement & Automation Explorer.
Example: "Virtual 1"
Data Types: char | string

deviceChannelIndex — Index of channel on device
numeric value

Index of channel on the device, specified as a numeric value.
Example: 1

IPAddr — IP address of device
char vector | string

IP address of the device, specified as a character vector or string
Example: "10.255.255.255"
Data Types: char | string

portNmbr — Port number for device connection
numeric

Port number for device connection, specified as a numeric value.
Example: 80

Output Arguments
xcpch — XCP channel
xcp.Channel object

XCP channel, returned as an xcp.Channel object with xcp.Channel Properties.

See Also
Functions
xcpA2L | connect | disconnect | isConnected

Properties
xcp.Channel Properties

Introduced in R2013a

11 Functions

11-244

Properties by Class

12

can.Channel Properties
Properties of the can.Channel object

Description
Use the following properties to examine or configure CAN channel settings. Use canChannel to
create a CAN channel object.

Properties
Device Information

DeviceVendor — Device vendor name
char vector

The DeviceVendor property indicates the name of the device vendor.

Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.
Data Types: char

Device — Channel device type
char vector

This property is read-only.

For National Instruments devices, the Device property displays the device number on the hardware.

For all other vendors, the Device property displays information about the device type to which the
CAN or J1939 channel is connected.

Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.
Data Types: char

DeviceChannelIndex — Device channel index
double

This property is read-only.

The DeviceChannelIndex property indicates the channel index on which the specified CAN or
J1939 channel is configured.

Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.
Data Types: double

DeviceSerialNumber — Device serial number
double | char

12 Properties by Class

12-2

This property is read-only.

The DeviceSerialNumber property displays the serial number of the device connected to the CAN
or J1939 channel.

Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.
Data Types: double | char

ProtocolMode — Protocol mode of CAN channel
'CAN' (default) | 'CAN FD'

This property is read-only.

The ProtocolMode property indicates the communication protocol for which the CAN channel is
configured, either CAN or CAN FD.

The value is defined when you configure the channel with the canChannel function.
Data Types: char

Status Information

Running — Indicate running status of channel
false (0) | true (1)

This property is read-only.

The Running property indicates the state of the CAN or J1939 channel, according to the following
values:

• false (default) — The channel is offline.
• true — The channel is online.

Use the start function to set your channel online.
Data Types: logical

MessagesAvailable — Number of messages available to be received by CAN channel
double

This property is read-only.

The MessagesAvailable property displays the total number of messages available to be received by
a CAN channel. The value is 0 when no messages are available.
Data Types: double

MessagesReceived — Number of messages received by CAN channel
double

This property is read-only.

The MessagesReceived property indicates the total number of messages received since the channel
was last started. The value is 0 when no messages have been received, and increments based on the
number of messages the channel receives.

 can.Channel Properties

12-3

Data Types: double

MessagesTransmitted — Number of messages transmitted by CAN channel
double

This property is read-only.

The MessagesTransmitted property indicates the total number of messages transmitted since the
channel was last started. The default value is 0 when no messages have been sent, and increments
based on the number of messages the channel transmits.
Data Types: double

MessageReceivedFcn — Callback function to run when messages available
function handle | char | string

Configure MessageReceivedFcn as a callback function to run, specified as a character vector,
string, or a function handle, when a required number of messages are available.

The MessageReceivedFcnCount property defines the required number of messages available
before the configured MessageReceivedFcn runs.

For example, to specify the callback function to execute:

canch.MessageReceivedFcn = @Myfunction;

Data Types: char | string | function_handle

MessageReceivedFcnCount — Specify number of messages available before callback is
triggered
numeric

Configure MessageReceivedFcnCount to the number of messages that must be available before the
MessageReceivedFcn callback function is triggered.

The default value is 1. You can specify a positive integer for your MessageReceivedFcnCount. For
example, to specify the message count required to trigger a callback:

canch.MessageReceivedFcnCount = 55;

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InitializationAccess — Indicate control of device channel
true (1) | false (0)

This property is read-only.

The InitializationAccess property indicates if the configured CAN or J1939 channel object has
full control of the device channel, according to the following values:

• true — Has full control of the hardware channel and can change the property values.
• false — Does not have full control and cannot change property values.

You can change some property values of the hardware channel only if the object has full control over
the hardware channel.

12 Properties by Class

12-4

Note Only the first channel created on a device is granted initialization access.

Data Types: logical

InitialTimestamp — Indicate when channel started
datetime

This property is read-only.

The InitialTimestamp property indicates when the channel was set online with the start
function or when its start trigger was received. For National Instruments devices, the time is
obtained from the device driver; for devices from other vendors the time is obtained from the
operating system where MATLAB is running.
Data Types: datetime

FilterHistory — Indicate settings of message acceptance filters
char

This property is read-only.

Indicate settings of message acceptance filters, returned as a character vector. This property
indicates the settings implemented by the functions filterAllowOnly, filterAllowAll, and
filterBlockAll.
Example: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'
Data Types: char

Channel Information

BusStatus — Status of bus
char

This property is read-only.

The BusStatus property displays information about the state of the CAN bus or the J1939 bus.

• 'N/A' — Property not supported by vendor.
• 'ErrorActive' — Node transmits Active Error Flags when it detects errors. Note: This status

does not necessarily indicate that an error actually exists, but indicates how an error is handled.
• 'ErrorPassive' — Node transmits Passive Error Flags when it detects errors.
• 'BusOff' — Node will not transmit anything on the bus.

Data Types: char

SilentMode — Specify if channel is active or silent
false (default) | true

Specify whether the channel operates silently, according to the following values:

• false (default) — The channel is in normal or active mode. In this mode, the channel both
transmits and receives messages normally and performs other tasks on the network such as
acknowledging messages and creating error frames.

 can.Channel Properties

12-5

• true — The channel is in silent mode. You can observe all message activity on the network and
perform analysis without affecting the network state or behavior. In this mode, you can only
receive messages and not transmit any.

Data Types: logical

TransceiverName — Name of device transceiver
char

This property is read-only.

TransceiverName indicates the name of the device transceiver. The device transceiver translates
the digital bit stream going to and coming from the bus into the real electrical signals present on the
bus.
Data Types: char

TransceiverState — Specify state or mode of transceiver
numeric

If your CAN or J1939 transceiver allows you to control its mode, you can use the TransceiverState
property to set the mode.

The numeric property value for each mode is defined by the transceiver manufacturer. Refer to your
CAN transceiver documentation for the appropriate transceiver modes. Possible modes representing
the numeric value specified are:

• high speed
• high voltage
• sleep
• wake up

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReceiveErrorCount — Number of errors during message reception
double

This property is read-only.

The ReceiveErrorCount property indicates the total number of errors during message reception
since the channel was last started. The default value is 0, and increments based on the number of
errors.
Data Types: double

TransmitErrorCount — Number of errors during message transmission
double

This property is read-only.

The TransmitErrorCount property indicates the total number of errors during message
transmission since the channel was last started. The default value is 0, and increments based on the
number of errors.
Data Types: double

12 Properties by Class

12-6

BusSpeed — Bit rate of bus transmission
double

This property is read-only.

The BusSpeed property indicates the speed at which messages are transmitted in bits per second.
The default value is assigned by the vendor driver.

You can set BusSpeed to a supported bit rate using the configBusSpeed function, specifying the
channel name and the bit rate value as input parameters. For example, to change the bus speed of
the CAN channel object canch to 250,000 bits per second, and view the result, type

configBusSpeed(canch,250000);
bs = canch.BusSpeed

Data Types: double

SJW — Synchronization jump width (SJW) of bit time segment
double

This property is read-only.

SJW displays the synchronization jump width of the bit time segment. To adjust the on-chip bus clock,
the controller can shorten or prolong the length of a bit by an integral number of time segments. The
maximum value of these bit time adjustments are termed the synchronization jump width or SJW.

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Data Types: double

TSEG1,TSEG2 — Allowed number of bits segments to lengthen and shorten sample time
double

This property is read-only.

The TSEG1 and TSEG2 properties indicate the amount in bit time segments that the channel can
lengthen and shorten the sample time, respectively, to resynchronize or compensate for delay times
in the network. The value is inherited when you configure the bus speed of your CAN channel.

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Data Types: double

NumOfSamples — Number of samples available to channel
double

This property is read-only.

The NumOfSamples property is a bit timing parameter that indicates the number of bit samples
performed for a single bit read on the network. The value is a positive integer based on the driver
settings for the channel.

 can.Channel Properties

12-7

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Data Types: double

BusLoad — Load on CAN bus
double

This property is read-only.

The BusLoad property provides information about the load on the CAN network for message traffic
on Kvaser devices. The current message traffic on a CAN network is represented as a percentage
ranging from 0.00% to 100.00%.
Data Types: double

OnboardTermination — Configure bus termination on device
true (1) | false | (0)

The OnboardTermination property specifies whether the NI-XNET device uses its onboard
termination of the CAN bus. For more information on the behavior and characteristics of a specific
device, refer to its vendor documentation.
Data Types: logical

StartTriggerTerminal — Specify start trigger source terminal
char | string

The StartTriggerTerminal property specifies a synchronization trigger connection to start the NI-
XNET channel on the connected source terminal.

To configure an NI-XNET CAN module (such as NI 9862) to start acquisition on an external signal
triggering event provided at an external chassis terminal, set the CAN channel
StartTriggerTerminal property to the appropriate terminal name. Form the property value
character vector by combining the chassis name from the NI MAX utility and the trigger terminal
name; for example, '/cDAQ3/PFI0'.

Note This property can be configured only once. After it is assigned, the property is read-only and
cannot be changed. The only way to set a different value is to clear the channel object, recreate the
channel with canChannel, and configure its properties.

Examples

Configure an NI-XNET CAN module start trigger on terminal /cDAQ3/PFI0.

ch1 = canChannel('NI','CAN1')
ch1.StartTriggerTerminal = '/cDAQ3/PFI0'
start(ch1) % Acquisition begins on hardware trigger

With a hardware triggering configuration, the InitialTimestamp value represents the absolute
time the CAN channel acquisition was triggered. The Timestamp values of the received CAN
messages are relative to the trigger moment.

12 Properties by Class

12-8

ch1.InitialTimestamp
messages = receive(ch1,Inf);
messages(1).Timestamp

Data Types: char | string

Other Information

DataBase — CAN database information
struct

The Database property stores information about an attached CAN database. If your channel
message is not attached to a database, the property value is an empty structure, []. You can edit the
CAN channel Database property, but cannot edit the CAN message Database property.

To see information about the database attached to your CAN message, type:

message.Database

To set the database information on your CAN channel to C:\Database.dbc, type:

channel.Database = canDatabase('C:\Database.dbc')

Tip CAN database file names containing non-alphanumeric characters such as equal signs and
ampersands are incompatible with Vehicle Network Toolbox. You can use a period in your database
name. Rename any CAN database files with non-alphanumeric characters before you use them.

Data Types: struct

UserData — Custom data
any data

Enter custom data to be stored in your CAN message or a J1939 parameter group, channel, or
database object using the UserData property. When you save an object with UserData specified, you
automatically save the custom data. When you load an object with UserData specified, you
automatically load the custom data.

Tip To avoid unexpected results when you save and load an object with UserData, specify your
custom data in simple data types and constructs.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

See Also
Functions
canChannel | configBusSpeed | receive | transmit

Topics
“CAN and CAN FD Communication”

 can.Channel Properties

12-9

Introduced in R2009a

12 Properties by Class

12-10

can.Message Properties
Properties of the can.Message object

Description
Use the following properties to examine or configure CAN and CAN FD message settings. Use
canMessage to create a CAN message.

Properties
Message Identification

ProtocolMode — Protocol mode of CAN channel
'CAN' (default) | 'CAN FD'

This property is read-only.

The ProtocolMode property indicates the communication protocol for which the CAN message is
configured, either CAN or CAN FD.

The value is defined when you configure the message with the canChannel function.
Data Types: char

ID — Identifier for CAN message
double

This property is read-only.

The ID property represents a numeric identifier for a CAN message. The values range:

• 0 through 2047 for a standard identifier
• 0 through 536,870,911 for an extended identifier

You can configure the message ID when constructing it. For example, to set a standard identifier of
value 300 and a data length of eight bytes, type:

message = canMessage(300,false,8)

For hexadecimal values, convert using the hex2dec function.
Data Types: double

Extended — Identifier type for CAN message
0 (false) (default) | 1 (true)

This property is read-only.

The Extended property is the identifier type for a CAN message. It can either be a standard
identifier or an extended identifier, according to the following values:

 can.Message Properties

12-11

• false — The identifier type is standard (11 bits).
• true — The identifier type is extended (29 bits).

You can configure the message extended property when constructing it. For example, to set the
message identifier type to extended, with the ID set to 2350, and the data length to eight bytes, type:

message = canMessage(2350,true,8)

Data Types: logical

Name — CAN message name
char

This property is read-only.

The Name property displays the name of the message, as a character vector value. This value is
acquired from the name of the message you defined in the database. You cannot edit this property if
you are defining raw messages.
Data Types: char

Data Details

Timestamp — Time when message received
double

The Timestamp property displays the time at which the message was received on a CAN channel.
This time is based on the receiving channel start time.

You might want to set the value when constructing a message. For example, to set the time stamp of a
message to 12, type:

message.Timestamp = 12

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fi

Data — CAN message raw data
uint8 array

Use the Data property to define the raw data in a CAN message. The data is an array of uint8 values,
based on the data length you specify in the message.

For example, to create a CAN message and define its data:

message = canMessage(2500,true,8)
message.Data = [23 43 23 43 54 34 123 1]

If you are using a CAN database for your message definitions, you can directly specify values in the
Signals property structure.

You can also use the pack function to load data into your message.
Data Types: uint8

Signals — Physical signals defined in CAN message
struct

12 Properties by Class

12-12

The Signals property allows you to view and edit decoded signal values defined for a CAN message.
This property displays an empty structure if the message has no defined signals or a database is not
attached to the message. The input values for this property depend on the signal type.

Create a CAN message.

message = canMessage(canDb,'messageName');

Display message signals.

message.Signals

 VehicleSpeed: 0
 EngineRPM: 250

Change the value of a signal.

message.Signals.EngineRPM = 300

Data Types: struct

Length — Length of CAN message
uint8

Length of the CAN message in bytes, specified as a uint8 value. This indicates the number of
elements in the Data vector. For CAN messages this is limited to 8 bytes; for CAN FD messages the
length can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes.
Data Types: uint8

DLC — CAN message data length code
uint8

This property is read-only.

Length code of the CAN FD message data, returned as a uint8 value. This relates to the Length
property: for sizes up to 8 bytes they are the same, but DLC values ranging from 9 (binary 1001) to 15
(binary 1110) are used to specify the data lengths of 12, 16, 20, 24, 32, 48, and 64 bytes. For more
information, see CAN FD - Some Protocol Details.
Data Types: uint8

Protocol Flags

BRS — CAN FD message bit rate switch
0 (false) | 1 (true)

The BRS property indicates that the CAN FD message bit rate switch is set. This determines whether
the bit rate for the data phase of the message is faster (true) or the same (false) as the bit rate of
the arbitration phase. For more information, see CAN FD - Some Protocol Details.
Data Types: logical

ESI — CAN FD message error state indicator
0 (false) | 1 (true)

This property is read-only.

 can.Message Properties

12-13

https://www.can-cia.org/can-knowledge/can/can-fd/
https://www.can-cia.org/can-knowledge/can/can-fd/

The ESI property indicates that the CAN FD message error state indicator flag is set. For more
information, see CAN FD - Some Protocol Details.
Data Types: logical

Error — CAN message error frame indicator
0 (false) | 1 (true)

This property is read-only.

The Error property indicates if true that the CAN message is an error frame.
Data Types: logical

Remote — Specify CAN message remote frame
false (default) | true

Use the Remote property to specify the CAN message as a remote frame.

• false (default) — The message is not a remote frame.
• true — The message is a remote frame.

To change the default value of Remote and make the message a remote frame, type:

message.Remote = true

Data Types: logical

Other Information

DataBase — CAN database information
struct

The Database property stores information about an attached CAN database. If your channel
message is not attached to a database, the property value is an empty structure, []. You can edit the
CAN channel Database property, but cannot edit the CAN message Database property.

To see information about the database attached to your CAN message, type:

message.Database

To set the database information on your CAN channel to C:\Database.dbc, type:

channel.Database = canDatabase('C:\Database.dbc')

Tip CAN database file names containing non-alphanumeric characters such as equal signs and
ampersands are incompatible with Vehicle Network Toolbox. You can use a period in your database
name. Rename any CAN database files with non-alphanumeric characters before you use them.

Data Types: struct

UserData — Custom data
any data

Enter custom data to be stored in your CAN message or a J1939 parameter group, channel, or
database object using the UserData property. When you save an object with UserData specified, you

12 Properties by Class

12-14

https://www.can-cia.org/can-knowledge/can/can-fd/

automatically save the custom data. When you load an object with UserData specified, you
automatically load the custom data.

Tip To avoid unexpected results when you save and load an object with UserData, specify your
custom data in simple data types and constructs.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

See Also
Functions
canChannel | canMessage | receive | transmit | pack | unpack

Topics
“CAN and CAN FD Communication”

External Websites
CAN FD - Some Protocol Details

Introduced in R2009a

 can.Message Properties

12-15

https://www.can-cia.org/can-knowledge/can/can-fd/

can.Database Properties
Properties of the can.Database object

Description
Use the following properties to examine or configure CAN database settings. Use canDatabase to
create a CAN database object.

Properties
can.Database

Name — CAN database name
char

This property is read-only.

The Name property displays the name of the database, as a character vector value. This value is
acquired from the database file name.
Data Types: char

Path — Path to CAN database file
char

This property is read-only.

The Path property displays the path of the database including the DBC-file, as a character vector.
Data Types: char

Nodes — Node names from CAN database
cell

This property is read-only.

The Nodes property stores the names of all nodes defined in the specified CAN database, as a cell
array of character vectors. For example, to examine and index into the database nodes:

db = canDatabase('CANex.dbc');
db.Nodes

3×1 cell array

 {'AerodynamicControl' }
 {'Aftertreatment_1_GasIntake'}
 {'Aftertreatment_1_GasOutlet'}

db.Nodes{1}

'AerodynamicControl'

Data Types: cell

12 Properties by Class

12-16

NodeInfo — Information on CAN database nodes
struct

This property is read-only.

The NodeInfo property is a structure with information about all nodes defined in the specified CAN
database. The NodeInfo property is a read-only structure. Use indexing to access the information of
each node. For example:

db = canDatabase('CANex.dbc');
db.NodeInfo

3×1 struct array with fields:

 Name
 Comment
 Attributes
 AttributeInfo

db.NodeInfo(1).Name

'AerodynamicControl'

Data Types: struct

Messages — Message names from CAN database
cell

This property is read-only.

The Messages property stores the names of all messages defined in the specified CAN database, as a
cell array of character vectors.

db = canDatabase('CANex.dbc');
db.Messages

3×1 cell array

 {'A1' }
 {'A1DEFI' }
 {'A1DEFSI'}

db.Messages{1}

 'A1'

Data Types: cell

MessageInfo — Information on CAN database messages
struct

This property is read-only.

The MessageInfo property is a structure with information about all messages defined in the
specified CAN database.

Use indexing to access the information of each message. For example:

 can.Database Properties

12-17

db = canDatabase('CANFDex.dbc');
db.MessageInfo

3×1 struct array with fields:

 Name: 'CANFDMessage'
 ProtocolMode: 'CAN FD'
 Comment: ''
 ID: 1
 Extended: 0
 J1939: []
 Length: 48
 DLC: 14
 BRS: 1
 Signals: {2×1 cell}
 SignalInfo: [2×1 struct]
 TxNodes: {0×1 cell}
 Attributes: {2×1 cell}
 AttributeInfo: [2×1 struct]

db.MessageInfo(1).Name

 'CANFDMessage'

Data Types: struct

Attributes — Attribute names from CAN database
cell

This property is read-only.

The Attributes property stores the names of all attributes defined in the specified CAN database,
as a cell array of character vectors.

Use indexing to access the information of each attribute. For example:

db = canDatabase('CANex.dbc');
db.Attributes

3×1 cell array

 {'BusType' }
 {'DatabaseVersion'}
 {'ProtocolType' }

db.Attributes{1}

 'BusType'

Data Types: cell

AttributeInfo — Information on CAN database attributes
struct

This property is read-only.

The Attributeinfo property is a structure with information about all attributes defined in the
specified CAN database.

12 Properties by Class

12-18

Use indexing to access the information of each attribute.

db = canDatabase('CANex.dbc');
db.AttributeInfo

3×1 struct array with fields:

 Name
 ObjectType
 DataType
 DefaultValue
 Value

db.AttributeInfo(1).Name

 'BusType'

Data Types: struct

UserData — Custom data
any data

Enter custom data to be stored in your CAN message or a J1939 parameter group, channel, or
database object using the UserData property. When you save an object with UserData specified, you
automatically save the custom data. When you load an object with UserData specified, you
automatically load the custom data.

Tip To avoid unexpected results when you save and load an object with UserData, specify your
custom data in simple data types and constructs.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

See Also
Functions
canDatabase | attachDatabase | canMessage | j1939Channel | j1939ParameterGroup

Introduced in R2009a

 can.Database Properties

12-19

j1939.Channel Properties
Properties of the j1939.Channel object

Description
Use the following properties to examine or configure J1939 channel settings. Use j1939Channel to
create a channel.

Properties
Device Information

DeviceVendor — Device vendor name
char vector

This property is read-only.

The DeviceVendor property indicates the name of the device vendor.

Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.
Data Types: char

Device — Channel device type
char vector

This property is read-only.

For National Instruments devices, the Device property displays the device number on the hardware.

For all other vendors, the Device property displays information about the device type to which the
CAN or J1939 channel is connected.

Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.
Data Types: char

DeviceChannelIndex — Device channel index
double

This property is read-only.

The DeviceChannelIndex property indicates the channel index on which the specified CAN or
J1939 channel is configured.

Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.
Data Types: double

12 Properties by Class

12-20

DeviceSerialNumber — Device serial number
double | char

This property is read-only.

The DeviceSerialNumber property displays the serial number of the device connected to the CAN
or J1939 channel.

Values are automatically defined when you configure the channel with the canChannel or
j1939Channel function.
Data Types: double | char

Data Details

ParameterGroupsAvailable — Number of parameter groups available to be received
double

This property is read-only.

The ParameterGroupsAvailable property displays the total number of parameter groups available
to be received by the channel.
Data Types: double

ParameterGroupsReceived — Number of parameter groups received by channel
double

This property is read-only.

The ParameterGroupsReceived property indicates the total number of parameter groups received
since the channel was last started.
Data Types: double

ParameterGroupsTransmitted — Number of parameter groups transmitted by channel
double

This property is read-only.

The ParameterGroupsTransmitted property indicates the total number of parameter groups
transmitted since the channel was last started.
Data Types: double

FilterPassList — List of parameter groups to pass
char | cell

This property is read-only.

FilterPassList displays a list of parameter group names and numbers that the channel can pass
to the network. The list displays parameter group names and numbers as character vectors or cell
arrays of character vectors and numbers.

To change the values, use one of the filtering functions: filterAllowOnly, filterAllowAll, or
filterBlockAll

Data Types: char | cell

 j1939.Channel Properties

12-21

FilterBlockList — List of parameter groups to block
char | cell

This property is read-only.

FilterBlockList displays a list of parameter group names and numbers blocked by the channel.
The list displays parameter group names and numbers as character vectors or cell arrays of character
vectors and numbers. To change the values, use one of the filtering functions.

To change the values, use one of the filtering functions: filterAllowOnly, filterAllowAll, or
filterBlockAll

Data Types: char | cell

Channel Information

Running — Indicate running status of channel
false (0) | true (1)

This property is read-only.

The Running property indicates the state of the CAN or J1939 channel, according to the following
values:

• false (default) — The channel is offline.
• true — The channel is online.

Use the start function to set your channel online.
Data Types: logical

BusStatus — Status of bus
char

This property is read-only.

The BusStatus property displays information about the state of the CAN bus or the J1939 bus.

• 'N/A' — Property not supported by vendor.
• 'ErrorActive' — Node transmits Active Error Flags when it detects errors. Note: This status

does not necessarily indicate that an error actually exists, but indicates how an error is handled.
• 'ErrorPassive' — Node transmits Passive Error Flags when it detects errors.
• 'BusOff' — Node will not transmit anything on the bus.

Data Types: char

InitializationAccess — Indicate control of device channel
true (1) | false (0)

This property is read-only.

The InitializationAccess property indicates if the configured CAN or J1939 channel object has
full control of the device channel, according to the following values:

• true — Has full control of the hardware channel and can change the property values.

12 Properties by Class

12-22

• false — Does not have full control and cannot change property values.

You can change some property values of the hardware channel only if the object has full control over
the hardware channel.

Note Only the first channel created on a device is granted initialization access.

Data Types: logical

InitialTimestamp — Indicate when channel started
datetime

This property is read-only.

The InitialTimestamp property indicates when the channel was set online with the start
function or when its start trigger was received. For National Instruments devices, the time is
obtained from the device driver; for devices from other vendors the time is obtained from the
operating system where MATLAB is running.
Data Types: datetime

SilentMode — Specify if channel is active or silent
false (default) | true

Specify whether the channel operates silently, according to the following values:

• false (default) — The channel is in normal or active mode. In this mode, the channel both
transmits and receives messages normally and performs other tasks on the network such as
acknowledging messages and creating error frames.

• true — The channel is in silent mode. You can observe all message activity on the network and
perform analysis without affecting the network state or behavior. In this mode, you can only
receive messages and not transmit any.

Data Types: logical

TransceiverName — Name of device transceiver
char

This property is read-only.

TransceiverName indicates the name of the device transceiver. The device transceiver translates
the digital bit stream going to and coming from the bus into the real electrical signals present on the
bus.
Data Types: char

TransceiverState — Specify state or mode of transceiver
numeric

If your CAN or J1939 transceiver allows you to control its mode, you can use the TransceiverState
property to set the mode.

 j1939.Channel Properties

12-23

The numeric property value for each mode is defined by the transceiver manufacturer. Refer to your
CAN transceiver documentation for the appropriate transceiver modes. Possible modes representing
the numeric value specified are:

• high speed
• high voltage
• sleep
• wake up

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BusSpeed — Bit rate of bus transmission
double

This property is read-only.

The BusSpeed property indicates the speed at which messages are transmitted in bits per second.
The default value is assigned by the vendor driver.

You can set BusSpeed to a supported bit rate using the configBusSpeed function, specifying the
channel name and the bit rate value as input parameters. For example, to change the bus speed of
the CAN channel object canch to 250,000 bits per second, and view the result, type

configBusSpeed(canch,250000);
bs = canch.BusSpeed

Data Types: double

SJW — Synchronization jump width (SJW) of bit time segment
double

This property is read-only.

SJW displays the synchronization jump width of the bit time segment. To adjust the on-chip bus clock,
the controller can shorten or prolong the length of a bit by an integral number of time segments. The
maximum value of these bit time adjustments are termed the synchronization jump width or SJW.

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Data Types: double

TSEG1,TSEG2 — Allowed number of bits segments to lengthen and shorten sample time
double

This property is read-only.

The TSEG1 and TSEG2 properties indicate the amount in bit time segments that the channel can
lengthen and shorten the sample time, respectively, to resynchronize or compensate for delay times
in the network. The value is inherited when you configure the bus speed of your CAN channel.

12 Properties by Class

12-24

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Data Types: double

NumOfSamples — Number of samples available to channel
double

This property is read-only.

The NumOfSamples property is a bit timing parameter that indicates the number of bit samples
performed for a single bit read on the network. The value is a positive integer based on the driver
settings for the channel.

Note This property is not available for National Instruments CAN devices. The channel displays NaN
for the value.

Data Types: double

Other Information

UserData — Custom data
any data

Enter custom data to be stored in your CAN message or a J1939 parameter group, channel, or
database object using the UserData property. When you save an object with UserData specified, you
automatically save the custom data. When you load an object with UserData specified, you
automatically load the custom data.

Tip To avoid unexpected results when you save and load an object with UserData, specify your
custom data in simple data types and constructs.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

See Also
Functions
j1939Channel | j1939ParameterGroup | filterAllowOnly | filterAllowAll |
filterBlockAll | configBusSpeed | receive | transmit

Properties
j1939.ParameterGroup Properties

Topics
“J1939 Communication”

 j1939.Channel Properties

12-25

Introduced in R2015b

12 Properties by Class

12-26

j1939.ParameterGroup Properties
Properties of the j1939.ParameterGroup object

Description
Use the following properties to examine or configure J1939 parameter group settings. Use
j1939ParameterGroup to create a parameter group object.

Properties
Protocol Data Unit Details

Name — J1939 parameter group name
char

This property is read-only.

The Name property displays the name of the J1939 parameter group as a character vector. This value
is acquired from the name you define when you create the parameter group.
Data Types: char

PGN — J1939 parameter group number
uint32

This property is read-only.

The PGN property displays the number of the parameter group as a uint32 value. This value is
automatically assigned when you create the parameter group.
Data Types: uint32

Priority — Priority of parameter group
numeric

The Priority property specifies the precedence of the parameter group on the J1939 network.
Priority takes a numeric value of 0 (highest priority) to 7 (lowest priority), which specifies the
order of importance of the parameter group.
Data Types: uint32

PDUFormatType — J1939 parameter group PDU format
char

This property is read-only.

The PDUFormatType property displays the J1939 protocol data unit format of the parameter group,
as a character vector. This value is automatically assigned when you create the parameter group.
Data Types: char

SourceAddress — Address of parameter group source
numeric

 j1939.ParameterGroup Properties

12-27

Address of the J1939 parameter group source. SourceAddress identifies the parameter group
source on the J1939 network. This allows the destinations to identify the sender and respond
appropriately.

Specify SourceAddress of the parameter group as a number between 0 and 253. 254 is a null value
and is used by your application to detect available addresses on the J1939 network.
Data Types: uint32

DestinationAddress — Address of parameter group destination
numeric

Address of the J1939 parameter group destination. DestinationAddress identifies the parameter
group destination on the J1939 network. The source uses the specified destination address to send
parameter groups.

Specify DestinationAddress of the parameter group as a number from 0 through 253. 254 is a
null value and is used by your application to detect available addresses on the J1939 network. To send
a parameter group to all devices on the network, use 255, which is the global value.
Data Types: uint32

Data Details

Timestamp — Time when parameter group received
double

This property is read-only.

The Timestamp property displays the time at which the parameter group was received on a J1939
channel. This time is based on the hardware log.
Data Types: double

Data — CAN message raw data
uint8 array

Use the Data property to view or define the raw data in a J1939 parameter group. The data is an
array of uint8 values.

For example, create a parameter group and specify data:

pg = j1939ParameterGroup(db,'PackedData')
pg.Data(1:2) = [50 0]

Data Types: uint8

Signals — Physical signals defined in parameter group
struct

The Signals property allows you to view and edit decoded signal values defined for a parameter
group. The input values for this property depend on the signal type.

For example, create a parameter group.

pg = j1939ParameterGroup(db,'PackedData')

Display the parameter group signals

12 Properties by Class

12-28

pg.Signals

 ToggleSwitch: -1
 SliderSwitch: -1
 RockerSwitch: -1
 RepeatingStairs: 255
 PushButton: 1

Change the value of the repeating stairs.

pg.Signals.RepeatingStairs = 200

 ToggleSwitch: -1
 SliderSwitch: -1
 RockerSwitch: -1
 RepeatingStairs: 200
 PushButton: 1

Data Types: struct

Other Information

UserData — Custom data
any data

Enter custom data to be stored in your CAN message or a J1939 parameter group, channel, or
database object using the UserData property. When you save an object with UserData specified, you
automatically save the custom data. When you load an object with UserData specified, you
automatically load the custom data.

Tip To avoid unexpected results when you save and load an object with UserData, specify your
custom data in simple data types and constructs.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

See Also
Functions
canDatabase | j1939Channel | j1939ParameterGroup

Properties
j1939.Channel Properties

Topics
“J1939 Communication”

External Websites
J1939 Standards Overview

Introduced in R2015b

 j1939.ParameterGroup Properties

12-29

https://www.kvaser.com/about-can/higher-layer-protocols/j1939-standards-overview/

xcp.A2L Properties
Properties of the xcp.A2L file object

Description
Use the following properties to examine xcp.A2L file object settings. Use xcpA2L to create an A2L-
file object.

Properties
xcp.A2L

FileName — Name of referenced A2L file
char

The FileName property displays the name of the referenced A2L file as a character vector.
Data Types: char

FilePath — Path of A2L file
char

The FilePath property displays the full file path to the A2L file, including the A2L-file name, as a
character vector.
Data Types: char

ServerName — Name of connected server
char

The ServerName property displays the name of the server node as specified in the A2L file, as a
character vector.
Data Types: char

Warnings — Warnings from A2L file generation
string

Stores warnings thrown by the A2L file parser.

a2lfile = xcpA2L('XCPSIM.a2l');
a2lfile.Warnings

ans =

 0×0 empty string array

Data Types: string

Events — Event names
cell

Event names, returned as a cell array of character vectors. For example:

12 Properties by Class

12-30

a2lfile = xcpA2L('XCPSIM.a2l');
a2lfile.Events

ans =

 1×6 cell array

 {'Key T'} {'10 ms'} {'100ms'} {'1ms'} {'FilterBypassDaq'} {'FilterBypassSt'}

Data Types: cell

EventInfo — Event information
array of xcp.Event object

Event information, returned as an array of xcp.Event objects. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
ei = a2lfile.EventInfo(1)

ei =

 Event with properties:

 Name: 'Key T'
 Direction: 'DAQ'
 MaxDAQList: 255
 ChannelNumber: 0
 ChannelTimeCycle: 0
 ChannelTimeUnit: 6
 ChannelPriority: 0
 ChannelTimeCycleInSeconds: 0

Data Types: xcp.Event

Measurements — Measurement names
cell

Measurement names, returned as a cell array of character vectors. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
a2lfile.Measurements(10:15)

ans =

 1×6 cell array

 {'FW1'} {'KL1Output'} {'MaxChannel1'} {'MinChannel1'} {'PWM'} {'PWMFiltered'}

Data Types: cell

MeasurementInfo — Measurement information
containers.Map object

Measurement information, returned as a Map object. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
mi = a2lfile.MeasurementInfo

mi =

 Map with properties:

 xcp.A2L Properties

12-31

 Count: 45
 KeyType: char
 ValueType: any

Data Types: containers.Map

Characteristics — Names of characteristics
cell

Names of characteristics, returned as a cell array of character vectors. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
a2lfile.Characteristics(10:15)

ans =

 1×6 cell array

 {'a0'} {'b0'} {'c0'} {'map1'} {'map1Counter'} {'map4_80_uc'}

Data Types: cell

CharacteristicInfo — Characteristic information
containers.Map object

Characteristic information, returned as a Map object. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
ci = a2lfile.CharacteristicInfo

ci =

 Map with properties:

 Count: 16
 KeyType: char
 ValueType: any

Data Types: containers.Map

AxisInfo — Axis information
containers.Map object

Axis information, returned as a Map object. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
ai = a2lfile.AxisInfo

ai =

 Map with properties:

 Count: 1
 KeyType: char
 ValueType: any

Data Types: containers.Map

RecordLayouts — Container for characteristic objects
containers.Map object

12 Properties by Class

12-32

Container for characteristic objects, returned as a containers.Map object. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
rl = a2lfile.RecordLayouts

rl =

 Map with properties:

 Count: 41
 KeyType: char
 ValueType: any

Data Types: containers.Map

CompuMethods — Container for computation method objects
containers.Map object

Container for computation method objects, returned as a containers.Map object. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
cm = a2lfile.CompuMethods

cm =

 Map with properties:

 Count: 16
 KeyType: char
 ValueType: any

Data Types: containers.Map

CompuTabs — Container for ComputationTAB method objects
containers.Map object

Container for ComputationTAB (conversion table) method objects used for interp, returned as a
containers.Map object. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
ct = a2lfile.CompuTabs

ct =

 Map with properties:

 Count: 0
 KeyType: char
 ValueType: any

Data Types: containers.Map

CompuVTabs — Container for ComputationVTAB method objects
containers.Map object

Container for ComputationVTAB (verbal conversion table) method objects used for enum, returned as
a containers.Map object. For example:

 xcp.A2L Properties

12-33

a2lfile = xcpA2L('XCPSIM.a2l');
cvt = a2lfile.CompuVTabs

cvt =

 Map with properties:

 Count: 2
 KeyType: char
 ValueType: any

Data Types: containers.Map

ProtocolLayerInfo — Protocol layer information
xcp.ProtocolLayerInfo object

The ProtocolLayerInfo property displays an xcp.ProtocolLayerInfo object containing general
information about the XCP protocol implementation of the server as defined in the A2L file. For
example:

a2lfile = xcpA2L('XCPSIM.a2l');
pli = a2lfile.ProtocolLayerInfo

pli =

 ProtocolLayerInfo with properties:

 AddressGranularity: 'ADDRESS_GRANULARITY_BYTE'
 ByteOrder: 'BYTE_ORDER_MSB_LAST'
 MaxCTO: 8
 MaxDTO: 8
 T1: 1000
 T2: 200
 T3: 0
 T4: 0
 T5: 0
 T6: 0
 T7: 0

Data Types: xcp.ProtocolLayerInfo

DAQInfo — DAQ related information
xcp.DAQInfo object

DAQ related information, returned as a DAQInfo object. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
di = a2lfile.DAQInfo

di =

 DAQInfo with properties:

 AddressExtension: 'ADDRESS_EXTENSION_FREE'
 ConfigType: 'DYNAMIC'
 GranularityODTEntrySizeDAQ: 'GRANULARITY_ODT_ENTRY_SIZE_DAQ_BYTE'
 IdentificationFieldType: 'IDENTIFICATION_FIELD_TYPE_ABSOLUTE'
 MaxDAQ: 0

12 Properties by Class

12-34

 MaxEventChannels: 6
 MaxODTEntrySizeDAQ: 7
 MinDAQ: 0
 OptimizationType: 'OPTIMISATION_TYPE_DEFAULT'
 OverloadIndication: 'OVERLOAD_INDICATION_PID'
 STIM: [1×1 struct]
 PrescalerSupported: 'PRESCALER_SUPPORTED'
 ResumeSupported: 'RESUME_NOT_SUPPORTED'
 Timestamp: [1×1 struct]

Data Types: xcp.DAQInfo

TransportLayerCANInfo — CAN specific transport layer information
xcp.XCPonCAN object

CAN specific transport layer information, returned as an XCPonCAN object. For example,

a2lfile = xcpA2L('XCPSIM.a2l');
tlci = a2lfile.TransportLayerCANInfo

tlci =

 XCPonCAN with properties:
 CommonParameters: [1×1 xcp.a2l.CommonParameters]
 TransportLayerInstance: ''
 CANIDBroadcast: []
 CANIDClient: 1
 CANIDClientIsExtended: 0
 CANIDServer: 2
 CANIDServerIsExtended: 0
 BaudRate: 500000
 SamplePoint: 62
 SampleRate: SINGLE
 BTLCycles: 8
 SJW: 1
 SyncEdge: SINGLE
 MaxDLCRequired: []
 MaxBusLoad: []
 MeasurementSplitAllowed: []
 CANFD: [1×0 xcp.a2l.CANFD]
 OptionalTLSubCmd: [0×0 xcp.a2l.OptionalCANTLSubCmd]

Data Types: xcp.XCPonCAN

TransportLayerUDPInfo — UDP transport layer information
xcp.XCPonIP object

UDP transport layer information, returned as an XCPonIP object. For example:

a2lfile = xcpA2L('XCPSIM.a2l');
tlui = a2lfile.TransportLayerUDPInfo

tlui =

 XCPonIP with properties:
 CommonParameters: [1×1 xcp.a2l.CommonParameters]
 TransportLayerInstance: ''
 Port: 5555

 xcp.A2L Properties

12-35

 Address: 2.1307e+09
 AddressString: '127.0.0.1'

Data Types: xcp.XCPonIP

TransportLayerTCPInfo — TCP transport layer information
xcp.XCPonIP object

TCP transport layer information, returned as a XCPonIP object.

a2lfile = xcpA2L('XCPSIM.a2l');
tlti = a2lfile.TransportLayerTCPInfo

tlti =

 0×0 XCPonIP array with properties:

 CommonParameters
 TransportLayerInstance
 Port
 Address
 AddressString

Data Types: xcp.XCPonIP

See Also
Functions
xcpA2L | getCharacteristicInfo | getMeasurementInfo | getEventInfo

Properties
xcp.Channel Properties

Topics
“XCP Communication”
“Communication in MATLAB”

External Websites
ASAM MCD-2 MC Technical Content

Introduced in R2013a

12 Properties by Class

12-36

https://www.asam.net/standards/detail/mcd-2-mc/wiki/#TechnicalContent

xcp.Channel Properties
Properties of the xcp.Channel object

Description
Use the following properties to examine or configure xcp.Channel object settings. Use xcpChannel
to create an XCP channel object.

Properties
xcp.Channel

ServerName — Name of connected server
char

This property is read-only.

Name of the server node as specified in the A2L file, returned as a character vector. For example:

xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);
sn = xcpch.ServerName

sn =

 'CPP'

Data Types: char

A2LFileName — Name of referenced A2L file
char

This property is read-only.

Name of the referenced A2L file, returned as a character vector.
Data Types: char

TransportLayer — Type of transport layer used for XCP connection
char

This property is read-only.

Type of transport layer used for XCP connection, returned as a character vector. For example:

xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);
tl = xcpch.TransportLayer

tl =

 'CAN'

Data Types: char

 xcp.Channel Properties

12-37

TransportLayerDevice — XCP transport layer connection details
struct

This property is read-only.

XCP transport layer connection details, including information about the device through which the
channel communicates with the server, returned as a structure. For example:

xcpch = xcpChannel(a2lfile,'CAN','Vector','Virtual 1',1);
tld = xcpch.TransportLayerDevice

tld =

 struct with fields:

 Vendor: 'Vector'
 Device: 'Virtual 1'
 ChannelIndex: 1

Data Types: struct

SeedKeyDLL — DLL-file containing seed and key access algorithm
char

The SeedKeyDLL property indicates the name of the DLL-file that contains the seed and key security
algorithm used to unlock an XCP server module. The file defines the algorithm for generating the
access key from a given seed according to ASAM standard definitions. For information on the file
format and API, see the Vector web page Steps to Use Seed&Key Option in CANape or "Seed and Key
Algorithm" in National Instruments CAN ECU Measurement and Calibration Toolkit User Manual.
Note: The DLL must be the same bitness as MATLAB (64-bit).
Data Types: char

See Also
Functions
xcpA2L | xcpChannel

Properties
xcp.A2L Properties

Topics
“XCP Communication”
“Communication in MATLAB”

Introduced in R2013a

12 Properties by Class

12-38

https://support.vector.com/kb?id=kb_article_view&sysparm_article=KB0011313
https://www.ni.com/pdf/manuals/371601m.pdf

Blocks

13

CAN Configuration
Configure parameters for specified CAN device
Library: Vehicle Network Toolbox / CAN Communication

Description
The CAN Configuration block configures parameters for a CAN device that you can use to transmit
and receive messages.

Specify the configuration of your CAN device before you configure other CAN blocks.

Use one CAN Configuration block to configure each device that sends and receives messages in your
model. If you use a CAN Receive or a CAN Transmit block to receive and send messages on a device,
your model requires a corresponding CAN Configuration block for the specified device.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The CAN Configuration block supports the use of Simulink Accelerator and Rapid Accelerator mode.
Using this feature, you can speed up the execution of Simulink models.

For more information on this feature, see the Simulink documentation.

Parameters
Device — CAN device and channel
list option

Select the CAN device and a channel on the device that you want to use from the list. Use this device
to transmit and receive messages. The device driver determines the default bus speed.

Programmatic Use
Block Parameter: Device
Type: character vector, string

Bus speed — CAN bus bit rate
integer

Set the BusSpeed property for the selected device, in bits per second. The default bus speed is the
default assigned by the selected device.

Programmatic Use
Block Parameter: BusSpeed
Type: character vector, string

13 Blocks

13-2

Values: integer

Enable bit parameters manually — Allow specifying individual bit parameters
off (default) | on

Note This option is available only for supporting vendors.

Select this check box to specify bit parameter settings manually. The bit parameter settings include:
Synchronization jump width, Time segment 1, Time segment 2, and Number of samples. For
more information on these parameters, see Bit Timing. If you do not select this option, the device
automatically assigns the bit parameters depending on the bus speed setting.

Tip Use the default bit parameter settings unless you have specific timing requirements for your
CAN connection.

Programmatic Use
Block Parameter: EnableBitParameters
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Synchronization jump width — Maximum allowed time adjustment
integer

Specify the maximum limit of bit time adjustment in the case of resynchronization. The specified
value must be a positive integer indicating a number of bit time quanta segments. If you do not
specify a value, the selected bus speed setting determine the default value. To change this value,
select the Enable bit parameters manually check box first.
Programmatic Use
Block Parameter: SJW
Type: character vector, string
Values: integer

Time segment 1 — Number of time quanta before sample
integer

Specify the number of bit time quanta before the sampling point. The specified value must be a
positive integer. Typically, an adjustment of this value is made with a corresponding inverse
adjustment to Time segment 2 so that their sum remains constant. If you do not specify a value, the
selected bus speed setting determines the default value. To change this value, select the Enable bit
parameters manually check box first.
Programmatic Use
Block Parameter: TSEG1
Type: character vector, string
Values: integer

Time segment 2 — Number of time quanta after sample
integer

Specify the number of bit time quanta after the sampling point. The specified value must be a positive
integer. Typically, an adjustment of this value is made with a corresponding inverse adjustment to

 CAN Configuration

13-3

https://en.wikipedia.org/wiki/CAN_bus#Bit_timing

Time segment 1 so that their sum remains constant. If you do not specify a value, the selected bus
speed setting determines the default value. To change this value, select the Enable bit parameters
manually check box first.

Programmatic Use
Block Parameter: TSEG2
Type: character vector, string
Values: integer

Number of samples — Samples per bit
integer

Specify the number of samples per bit. The specified value must be a positive integer. If you do not
specify a value, the selected bus speed setting determines the default value. To change this value,
select the Enable bit parameters manually check box first.

Programmatic Use
Block Parameter: NSamples
Type: character vector, string
Values: integer

Verify bit parameter settings validity — Check validity of settings

If you have set the bit parameter settings manually, click this button to see if your settings are valid.
The block runs a check to see if the combination of your bus speed and bit parameter values form a
valid combination for the CAN device. If the current combination is not valid, the verification fails and
displays an error message. This button is active only when the Enable bit parameters manually
check box is selected.

Programmatic Use

None

Acknowledge mode — Control channel activity on CAN bus
Normal (default) | Silent

Specify whether the channel is in Normal or Silent mode. By default Acknowledge mode is
Normal. In this mode, the channel can receive and transmit messages normally, and perform other
tasks on the network such as acknowledging messages and creating error frames. To observe all
message activity on the network and perform analysis, without affecting the network state or
behavior, select Silent. In Silent mode, the channel can only receive messages and not transmit.

Programmatic Use
Block Parameter: AckMode
Type: character vector, string
Values: 'Normal' | 'Silent'
Default: 'Normal'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

When used with the CAN Receive and CAN Transmit blocks, the CAN Configuration block supports
code generation, but with limited portability that runs only on the host computer.

13 Blocks

13-4

See Also
Blocks
CAN Receive | CAN Transmit

Properties
can.Channel Properties

External Websites
Bit Timing

Introduced in R2009a

 CAN Configuration

13-5

https://en.wikipedia.org/wiki/CAN_bus#Bit_timing

CAN FD Configuration
Configure parameters for specified CAN FD device
Library: Vehicle Network Toolbox / CAN FD Communication

Description
The CAN FD Configuration block configures parameters for a CAN FD device that you can use to
transmit and receive messages.

Specify the configuration of your CAN FD device before you configure other CAN FD blocks.

Use one CAN FD Configuration block to configure each device that sends and receives messages in
your model. If you use a CAN FD Receive or a CAN FD Transmit block to receive and send messages
on a device, your model checks to see if there is a corresponding CAN FD Configuration block for the
specified device.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The CAN FD Configuration block supports the use of Simulink Accelerator mode. Using this feature,
you can speed up the execution of Simulink models. For more information, see “Acceleration”
(Simulink).

Parameters
Device — CAN device and channel
list option

Select the CAN FD device and a channel on the device that you want to use from the list. Use this
device to transmit and/or receive messages. The device driver determines the default bus speed.

Programmatic Use
Block Parameter: Device
Type: character vector, string

Arbitration Bus speed — Arbitration bit rate
numeric

Set arbitration bus speed for the selected device, in bits per second. The default speed is assigned by
the selected device.

Programmatic Use
Block Parameter: ArbitrationBusSpeed

13 Blocks

13-6

Type: character vector, string
Values: integer

Data Bus speed — Data bit rate
numeric

Set data bus speed for the selected device, in bits per second. The default speed is assigned by the
selected device.
Programmatic Use
Block Parameter: DataBusSpeed
Type: character vector, string
Values: integer

Bus frequency — PEAK-System bus rate
numeric

(PEAK-System only.) Set the bus frequency, in megahertz.
Programmatic Use
Block Parameter: BusFrequency
Type: character vector, string
Values: numeric

Arbitration/Data bit rate prescaler — Bit rate prescaler
integer

(PEAK-System only.) Set separate bit rate prescaler values for arbitration and data bit rates.
Programmatic Use
Block Parameter: ArbitrationPrescaler, DataPrescaler
Type: character vector, string
Values: integer

For Vector and PEAK-System devices, the next three parameters are available in two sets for
manually setting bit parameters for data and arbitration bus speeds. For more information on these
parameters, see Bit Timing.

Synchronization jump width — Maximum allowed time adjustment
integer

Specify the maximum limit of bit time adjustment in the case of resynchronization. The specified
value must be a positive integer indicating a number of bit time quanta segments. If you do not
specify a value, the selected bus speed setting determines the default value.
Programmatic Use
Block Parameter: ArbitrationSJW, DataSJW
Type: character vector, string
Values: integer

Time segment 1 — Number of time quanta before sample
integer

Specify the number of bit time quanta before the sampling point. The specified value must be a
positive integer. Typically, an adjustment of this value is made with a corresponding inverse
adjustment to Time segment 2 so that their sum remains constant. If you do not specify a value, the
selected bus speed setting determines the default value.

 CAN FD Configuration

13-7

https://en.wikipedia.org/wiki/CAN_bus#Bit_timing

Programmatic Use
Block Parameter: ArbitrationTSEG1, DataTSEG1
Type: character vector, string
Values: integer

Time segment 2 — Number of time quanta after sample
integer

Specify the number of bit time quanta after the sampling point. The specified value must be a positive
integer. Typically, an adjustment of this value is made with a corresponding inverse adjustment to
Time segment 1 so that their sum remains constant. If you do not specify a value, the selected bus
speed setting determines the default value.

Programmatic Use
Block Parameter: ArbitrationTSEG2, DataTSEG2
Type: character vector, string
Values: integer

Verify bit parameter settings validity — Check validity of settings

If you have altered the bit parameter settings, click this button to see if your settings are valid. The
block runs a check to see if the combination of your bus speed settings and the bit parameter values
form a valid value for the device. If the new bit parameter values do not form a valid combination, the
verification fails and displays an error message.

Programmatic Use

None

Acknowledge mode — Control channel activity on CAN bus
Normal (default) | Silent

Specify whether the channel is in Normal or Silent mode. By default Acknowledge mode is Normal.
In this mode, the channel both receives and transmits messages normally and performs other tasks
on the network such as acknowledging messages and creating error frames. To observe all message
activity on the network and perform analysis, without affecting the network state or behavior, select
Silent. In Silent mode, you can only receive messages and not transmit.

Programmatic Use
Block Parameter: AckMode
Type: character vector, string
Values: 'Normal' | 'Silent'
Default: 'Normal'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

When used with the CAN FD Receive and CAN FD Transmit blocks, the CAN FD Configuration block
supports code generation, but with limited portability that runs only on the host computer.

13 Blocks

13-8

See Also
Blocks
CAN FD Pack | CAN FD Unpack | CAN FD Receive | CAN FD Transmit

Properties
can.Channel Properties

Introduced in R2018a

 CAN FD Configuration

13-9

CAN FD Log
Log received CAN FD messages
Library: Vehicle Network Toolbox / CAN FD Communication

Description
The CAN FD Log block logs CAN FD messages from the CAN network, or messages sent to the block
input port, to a .mat file. You can load the saved messages into MATLAB for further analysis or into
another Simulink model.

Configure your CAN FD Log block to log from the Simulink input port. For more information, see
“Log and Replay CAN Messages” on page 14-73.

The CAN FD Log block appends the specified filename with the current date and time, creating
unique log files for repeated logging.

If you want to use messages logged using Simulink blocks in the MATLAB Command window, use
canFDMessage to convert messages to the correct format.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Note You cannot have more than one CAN FD Log block in a model using the same PEAK-System
device channel.

Other Supported Features

• The CAN FD Log block supports the use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models. For more information on this feature, see
“Acceleration” (Simulink).

• The CAN FD Log block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries.

Code Generation

Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder™, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

13 Blocks

13-10

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Ports
Input

CAN Msg — CAN FD messages to log
CAN_FD_MESSAGE_BUS

The CAN Msg input port is available when the Log messages from parameter is set to Input
port. Provide an input from another block as a Simulink signal bus of type CAN_FD_MESSAGE_BUS.
Data Types: CAN_FD_MESSAGE_BUS

Parameters

Tip If you are logging from the network, you need to configure your CAN channel with a CAN FD
Configuration block.

File name — Log file location and name
untitled.mat (default) | file name

Enter the path and name of the MAT-file to log CAN messages to, or click Browse to browse to a file
location.

The model appends the log file name with the current date and time in the format YYYY-MMM-
DD_hhmmss. Specify a unique name to differentiate between your files for repeated logging.

Variable name — Variable name for CAN FD messages in log file
ans (default) | variable name

Specify the name for the variable saved in the MAT-file that holds the CAN message information.

 CAN FD Log

13-11

Maximum number of messages to log — Limit quantity of messages
10000 (default) | numeric

Specify the maximum number of messages this block can log from the selected device or port. The
specified value must be a positive integer. The default value is 10000 messages. The log file saves the
most recent messages up to the specified maximum number.

Log messages from — Source of messages
CAN FD Bus (default) | Input port

Select the source of the messages logged by the block. To log messages from the CAN FD bus
network, select CAN FD Bus, then specify a Device. To log messages from another block in the
model, select Input port, which adds an inport port to the block.

Device — CAN device and channel
list option

Select the device on the CAN FD network that you want to log messages from. This field is available
only if you select CAN FD Bus for the Log messages from parameter.

Sample time — Block sampling time in simulation
0.01 (default) | numeric

Specify the sampling time of the block during simulation. This value defines the frequency at which
the CAN FD Log block runs during simulation. If the block is inside a triggered subsystem or to
inherit sample time, you can specify –1 as the sample time. You can also specify a MATLAB variable
for sample time. The default value is 0.01 simulation seconds. For more information, see “Timing in
Hardware Interface Models” on page 8-21.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates code with limited portability that runs only on the host computer. See “Code
Generation” on page 13-10.

See Also
Blocks
CAN FD Configuration | CAN FD Replay

Functions
canFDMessage | canFDMessageBusType

Introduced in R2018b

13 Blocks

13-12

CAN FD Pack
Pack individual signals into message for CAN FD bus
Library: Vehicle Network Toolbox / CAN FD Communication

Embedded Coder Support Package for Texas Instruments
C2000 Processors / Target Communication
Simulink Real-Time / CAN / CAN-FD MSG blocks

Description
The CAN FD Pack block loads signal data into a message at specified intervals during the simulation.

To use this block, you also need a license for Simulink software.

The CAN FD Pack block supports:

• The use of Simulink Accelerator mode. Using this feature, you can speed up the execution of
Simulink models. For more information, see “Design Your Model for Effective Acceleration”
(Simulink).

Tip

• To work with J1939 messages, use the blocks in the J1939 Communication block library instead of
this block. See “J1939 Communication”.

Ports
Input

Data — CAN FD message signal input
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The CAN FD Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals that you specify for the block. For example, if your message has
four signals, the block can have four input ports.

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

Output

Msg — CAN FD message output
CAN_FD_MESSAGE_BUS

 CAN FD Pack

13-13

This block has one output port, Msg. The CAN FD Pack block takes the specified input signals and
packs them into a CAN FD message, output as a Simulink CAN_FD_MESSAGE_BUS signal. For more
information on Simulink bus objects, see “Composite Signals” (Simulink).

Parameters
Data input as — Select your data signal
raw data (default) | manually specified signals | CANdb specified signals

• raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. all other signal parameter fields are unavailable. This option opens only one input
port on your block.

The conversion formula is:

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal and raw_value is the packed signal
value.

• manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on the
number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block inputs
depends on the number of signals specified in the CANdb file for the selected message.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input through a CANdb file in the Data is
input as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message. File names that contain non-alphanumeric characters such as
equal signs, ampersands, and so on are not valid CAN database file names. You can use periods in
your database name. Before you use the CAN database files, rename them with non-alphanumeric
characters.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

Message list — CAN message list
array of character vectors

This option is available if you specify that your data is input through a CANdb file in the Data is
input as field and you select a CANdb file in the CANdb file field. Select the message to display
signal details in the Signals table.

13 Blocks

13-14

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — CAN FD message name
CAN Msg (default) | character vector

Specify a name for your CAN FD message. The default is CAN Msg. This option is available if you
choose to input raw data or manually specify signals. This option is not available if you choose to use
signals from a CANdb file.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Protocol mode — CAN FD message protocol
CAN FD (default) | CAN

Specify the message protocol mode.

Programmatic Use
Block Parameter: ProtocolMode
Type: string | character vector
Values: 'CAN FD' | 'CAN'
Default: 'CAN FD'

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to input raw data or manually specify signals. For CANdb
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

Identifier — Message identifier
0 (default) | 0 .. 536870911

Specify your message ID. This number must be a positive integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. You can also specify hexadecimal
values by using the hex2dec function. This option is available if you choose to input raw data or
manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN FD message length
8 (default) | 0 to 64

 CAN FD Pack

13-15

Specify the length of your message. For CAN messages the value can be 0 to 8 bytes; for CAN FD the
value can be 0 to 8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified signals
for your data input, the CANdb file defines the length of your message. This option is available if you
choose to input raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8', '12', '16', '20', '24', '32', '48', '64'
Default: '8'

Remote frame — CAN message as remote frame
off (default) | on

(Disabled for CAN FD protocol mode.) Specify the CAN message as a remote frame.

Programmatic Use
Block Parameter: Remote
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Bit Rate Switch (BRS) — Enable bit rate switch
off (default) | on

(Disabled for CAN protocol mode.) Enable bit rate switch.

Programmatic Use
Block Parameter: BRSSwitch
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Add signal — Add CAN FD signal

Add a signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN FD signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

This table appears if you choose to specify signals manually or define signals by using a CANdb file.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to manually specified signals.

13 Blocks

13-16

If you have selected to specify signals manually, create your signals in this table. Each signal that you
create has these values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits
in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel®). In this format you count bits from
the least significant bit, to the most significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN FD Pack

13-17

Bit 3

3

911

19

27

35

43

51

Bit 0

0

8

16

24

32

40

48

56

1

Bit 1

17

25

33

41

49

57

Bit 2

2

10

18

26

34

42

50

5859

Bit 4

4

12

20

28

36

44

52

60

Bit 5

5

13

21

29

37

45

53

61

Bit 6

6

14

22

30

38

46

54

62

Bit 7

7

15

23

31

39

47

55

63

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Bit Number

D
at

a
By

te
 N

um
be

r

Data begins at the least significant
bit and starts at 20.

Data is written up to the most
significant bit and ends at 27.

LSB

MSB

Little-Endian Byte Order Counted from the Least-Significant Bit to the Highest
Address

• BE: Where byte order is in big-endian format (Motorola®). In this format you count bits from
the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
big-endian format, with the start bit at 20, the data bit table resembles this figure.

13 Blocks

13-18

Bit 3

3

911

19

27

35

43

51

Bit 0

0

8

16

24

32

40

48

56

1

Bit 1

17

25

33

41

49

57

Bit 2

2

10

18

26

34

42

50

5859

Bit 4

4

12

20

28

36

44

52

60

Bit 5

5

13

21

29

37

45

53

61

Bit 6

6

14

22

30

38

46

54

62

Bit 7

7

15

23

31

39

47

55

63

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Bit Number

D
at

a
By

te
 N

um
be

r

Data begins at the least significant
bit and starts at 20.

Data is written up to the most
significant bit and ends at 11.

LSB

MSB

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

 CAN FD Pack

13-19

Note: If you have a double signal that does not align exactly to the message byte boundaries,
to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block packs the signals into the message at each time step:

• Standard: The signal is packed at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at

run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block packs Signal-B along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block packs Signal-C along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
pack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. See the Data input as parameter conversion formula to understand how
physical values are converted to raw values packed into a message.

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. See the Data input as parameter conversion formula to understand how
physical values are converted to raw values packed into a message.

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For

13 Blocks

13-20

manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CAN FD Unpack | CAN FD Configuration | CAN FD Transmit | CAN Pack

Functions
canFDMessageBusType

Topics
“Design Your Model for Effective Acceleration” (Simulink)
“Composite Signals” (Simulink)

Introduced in R2018a

 CAN FD Pack

13-21

CAN FD Receive
Receive CAN FD messages from specified CAN FD device
Library: Vehicle Network Toolbox / CAN FD Communication

Description
The CAN FD Receive block receives messages from the CAN network and delivers them to the
Simulink model. It outputs one message or all messages at each timestep, depending on the block
parameters.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

The CAN FD Receive block has two output ports:

• The f() output port is a trigger to a Function-Call subsystem. If the block receives a new
message, it triggers a Function-Call from this port. You can then connect to a Function-Call
Subsystem to unpack and process a message.

• The Msg output port contains the CAN messages received at that particular timestep. The block
outputs messages as a Simulink bus signal. For more information on Simulink bus objects, see
“Composite Signals” (Simulink).

The CAN FD Receive block stores CAN messages in a first-in, first-out (FIFO) buffer. The FIFO buffer
delivers the messages to your model in the queued order at every timestep.

Note You cannot have more than one CAN FD Receive block in a model using the same PEAK-System
device channel.

Other Supported Features

The CAN FD Receive block supports the use of Simulink Accelerator mode. Using this feature, you
can speed up the execution of Simulink models. For more information, see “Acceleration” (Simulink).

The CAN FD Receive block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries.

Code Generation

Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

13 Blocks

13-22

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Ports
Output

CAN Msg — Received CAN messages
CAN_FD_MESSAGE_BUS

The CAN Msg output port contains one or more packed CAN messages received at that particular
timestep, output as a CAN_FD_MESSAGE_BUS. The output includes either one or all messages for that
timestep, depending on the setting of Number of messages received at each timestep.
Data Types: CAN_FD_MESSAGE_BUS

f() — Function-call event output
function-call event

The f() output port is a trigger to a Function-Call subsystem. If the block receives a new message, it
triggers a Function-Call from this port. You can then connect to a Function-Call Subsystem to unpack
and process a message.
Data Types: function-call event

 CAN FD Receive

13-23

Parameters

Tip Configure your CAN FD Configuration block before you configure the CAN FD Receive block
parameters.

Device — CAN device and channel
list option

Select from the list the CAN device and a channel on the device you want to receive CAN messages
from. This field lists all the devices installed on the system. It displays the vendor name, the device
name, and the channel ID. The default is the first available device on your system.

Programmatic Use
Block Parameter: Device
Type: character vector, string

Standard IDs Filter — Limit or allow messages based on standard ID
Allow all (default) | Allow only | Block all

Select the filter for standard IDs. Choices are:

• Allow all (default): Allows all standard IDs to pass the filter.
• Allow only: Allows only the ID or range of IDs specified in the text field, specified as a single ID

or an array of IDs. You can also specify disjointed IDs or arrays separated by a comma. For
example, to allow IDs 400 through 500, and 600 through 650, enter [[400:500],[600:650]].
Standard IDs must be positive integers from 0 to 2047. You can also specify hexadecimal values
with the hex2dec function.

• Block all: Blocks all standard IDs from passing the filter.

Programmatic Use
Block Parameter: StdIDsCombo
Type: character vector, string
Values: 'Allow all' | 'Allow only' | 'Block all'
Default: 'Allow all'

If using 'Allow only', set the filter values with the following:
Block Parameter: StandardIDs
Type: character vector, string
Values: integer scalar or row vector

Extended IDs Filter — Limit or allow messages based on extended ID
Allow all (default) | Allow only | Block all

Select the filter on this block for extended IDs. Choices are:

• Allow all (default): Allows all extended IDs to pass the filter.
• Allow only: Allows only those IDs specified in the text field. Allows only the ID or range of IDs
specified in the text field, specified as a single ID or an array of IDs. You can also specify disjointed
IDs or arrays separated by a comma. For example, to accept IDs 3000 through 3500, and 3600
through 3620, enter [[3000:3500],[3600:3620]]. Extended IDs must be positive integers
from 0 to 536870911. You can also specify hexadecimal values using the hex2dec function.

13 Blocks

13-24

• Block all: Blocks all extended IDs from passing the filter.

Programmatic Use
Block Parameter: ExtIDsCombo
Type: character vector, string
Values: 'Allow all' | 'Allow only' | 'Block all'
Default: 'Allow all'
Block Parameter: ExtendedIDs
Type: character vector, string
Values: integer scalar or row vector

Sample time — Block execution rate
0.01 (default)

Specify the sampling time of the block, which defines the rate at which the block is executed during
simulation. The default value is 0.01 simulation seconds. If the block is inside a triggered subsystem
or to inherit sample time, you can specify -1 as your sample time. You can also specify a MATLAB
variable for sample time. For more information, see “Timing in Hardware Interface Models” on page
8-21.

Programmatic Use
Block Parameter: SampleTime
Type: character vector, string
Values: double
Default: '0.01'

Number of messages received at each timestep — Receive one or all messages
1 (default) | all

Select how many messages the block receives at each specified timestep. Valid choices are:

• all (default): The CAN FD Receive block delivers all available messages in the FIFO buffer to the
model during a specific timestep. The block generates one function call for each delivered
message. The output port always contains one CAN message at a time.

• 1: The CAN FD Receive block delivers one message per timestep from the FIFO buffer to the
model.

If the block does not receive any messages before the next timestep, it outputs the last received
message.

Programmatic Use
Block Parameter: MsgsPerTimestep
Type: character vector, string
Values: '1' | 'all'
Default: '1'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates code with limited portability that runs only on the host computer. See “Code
Generation” on page 13-22.

 CAN FD Receive

13-25

See Also
Blocks
CAN FD Configuration | CAN FD Unpack | CAN FD Transmit

Functions
canFDMessageBusType

Introduced in R2018a

13 Blocks

13-26

CAN FD Replay
Replay logged CAN FD messages
Library: Vehicle Network Toolbox / CAN FD Communication

Description
The CAN FD Replay block replays logged messages from a .mat file to a CAN network or to Simulink
as a bus signal. For more information on Simulink bus objects, see “Composite Signals” (Simulink).
You need a CAN FD Configuration block to replay to the network.

To replay messages logged in the MATLAB Command window in your Simulink model, convert them
into a compatible format using canMessageReplayBlockStruct and save the result to a separate
file. For more information, see “Log and Replay CAN Messages” on page 14-73.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Replay Timing

When you replay logged messages, Simulink uses the original timestamps on the messages. When you
replay to a network, the timestamps correlate to real time, and when you replay to the Simulink input
port it correlates to simulation time. If the timestamps in the messages are all 0, all messages are
replayed as soon as the simulation starts, because simulation time and real time will be ahead of the
timestamps in the replayed messages.

Other Supported Features

• The CAN FD Replay block supports the use of Simulink Accelerator mode. Using this feature, you
can speed up the execution of Simulink models. For more information on this feature, see
“Acceleration” (Simulink).

• The CAN FD Replay block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries.

Code Generation

Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.
Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).
Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo

 CAN FD Replay

13-27

function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Ports
Output

CAN Msg — Replayed CAN FD messages
CAN_FD_MESSAGE_BUS

This output port contains a packed CAN FD messages logged at that particular timestep, output as a
signal bus of type CAN_FD_MESSAGE_BUS.
Data Types: CAN_FD_MESSAGE_BUS

f() — Function-call event output
function-call event

This port provides a trigger to a Function-Call subsystem when the block receives a new message.
You can connect it to a Function-Call Subsystem to unpack and process the message.
Data Types: function-call event

Parameters

Tip Configure the CAN FD Configuration block in the model before you configure the CAN FD
Receive block parameters.

File name — Path and name of MAT-file with messages
untitled.mat (default) | file name

Specify the path and name of the MAT-file that contains logged CAN FD messages that you can replay.
You can click Browse to browse to a file location and select the file.

Variable name — Variable in MAT-file holding messages
ans (default) | variable

13 Blocks

13-28

Specify the variable saved in the MAT-file that holds the CAN FD messages.

Number of times to replay messages — Repeat value
Inf (default) | integer

Specify the number of times you want the message replayed in your model. You can specify any
positive integer, including Inf. Specifying Inf continuously replays messages until simulation stops.

Replay messages to — Specify output location
CAN FD Bus (default) | Output port

Specify if the model is replaying messages to the CAN FD network or an output port. For a network,
you must also specify a Device.

Device — CAN FD device and channel
device list option

Select the device on the CAN FD network to replay messages to. This field is unavailable if you select
Output port for the Replay message to parameter.

Sample time — Block execution rate
0.01 (default) | numeric

Specify the sampling time of the block during simulation. This value defines the frequency at which
the CAN FD Replay block runs during simulation. If the block is inside a triggered subsystem or to
inherit sample time, you can specify –1 as the sample time. You can also specify a MATLAB variable
for sample time. The default value is 0.01 simulation seconds. For more information, see “Timing in
Hardware Interface Models” on page 8-21.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates code with limited portability that runs only on the host computer. See “Code
Generation” on page 13-27.

See Also
Blocks
CAN FD Configuration | CAN FD Log

Functions
canFDMessageBusType | canFDMessageReplayBlockStruct

Introduced in R2018b

 CAN FD Replay

13-29

CAN FD Transmit
Transmit CAN FD message to selected CAN FD device
Library: Vehicle Network Toolbox / CAN FD Communication

Description
The CAN FD Transmit block transmits messages to the CAN network using the specified CAN device.
The CAN FD Transmit block can transmit a single message or an array of messages during a given
timestep. To transmit an array of messages from a signal bus, use a Bus Creator or Vector
Concatenate, Matrix Concatenate block.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

The CAN FD Transmit block has one input port. This port accepts a CAN message packed using the
CAN FD Pack block. It has no output ports.

CAN is a peer-to-peer network, so when transmitting messages on a physical bus at least one other
node must be present to properly acknowledge the message. Without another node, the transmission
will fail as an error frame, and the device will continually retry to transmit.

Other Supported Features

The CAN FD Transmit block supports the use of Simulink Accelerator mode. Using this feature, you
can speed up the execution of Simulink models. For more information, see “Acceleration” (Simulink).

The CAN FD Transmit block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries.

Code Generation

Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip

13 Blocks

13-30

file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Ports
Input

CAN Msg — CAN FD messages to transmit
CAN_FD_MESSAGE_BUS

CAN FD messages to transmit, as packed by a CAN FD Pack block, input as a Simulink signal bus of
type CAN_FD_MESSAGE_BUS.
Data Types: CAN_FD_MESSAGE_BUS

Parameters

Tip Configure the CAN FD Configuration block in the model before you configure the CAN FD
Transmit block parameters.

Device — CAN FD device and channel
list option

Select the CAN device and channel for transmitting CAN FD messages to the network. This list shows
all the devices installed on the system. It displays the vendor name, the device name, and the channel
ID. The default is the first available device on your system.

Note: When using PEAK-System devices, CAN FD Transmit blocks in multiple enabled subsystems
might skip some messages. If possible, replace the enabled subsystems with a different type of
conditional subsystem, such as an if-action, switch-case-action, or triggered subsystem; or redesign
your model so that all the CAN FD Transmit blocks are contained within a single enabled subsystem.

Programmatic Use
Block Parameter: Device
Type: character vector, string

The following parameters define transmit options.

 CAN FD Transmit

13-31

On data change — Enable event-based transmission when data changes
off (default) | on

When event-based transmission is enabled, messages are transmitted only at those time steps when a
change in message data is detected. When the input data matches the most recent transmission for a
given message ID, the message is not re-transmitted.

Event and periodic transmission can both be enabled to work together simultaneously. If neither is
selected, the default behavior is to transmit the current input at each time step.

Programmatic Use
Block Parameter: EnableEventTransmit
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Periodic — Enable periodic transmission
off (default) | on

Select this option to enable periodic transmission of the message on the configured channel at the
specified message period. The period references real time, regardless of the Simulink model time
step size (fundamental sample time) or block execution sample time. This is equivalent to the
MATLAB function transmitPeriodic.

The periodic transmission is a nonbuffered operation. Only the last CAN message or set of messages
present at the input of the CAN FD Transmit block is sent when the time period occurs.

Programmatic Use
Block Parameter: EnablePerioicTransmit
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Transmit Options: Message period (in seconds) — Period of message transmission
rate
1.000 (default) | positive numeric scalar

Specify a period in seconds. This value is used to transmit the message in the specified period. By
default this value is 1.000 seconds.

Programmatic Use
Block Parameter: MessagePeriod
Type: character vector, string
Values: double
Default: '1.000'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates code with limited portability that runs only on the host computer. See “Code
Generation” on page 13-30.

13 Blocks

13-32

See Also
Blocks
CAN FD Configuration | CAN FD Pack | CAN FD Receive | Bus Creator | Vector Concatenate, Matrix
Concatenate

Functions
canFDMessageBusType | transmitPeriodic

Introduced in R2018a

 CAN FD Transmit

13-33

CAN FD Unpack
Unpack individual signals from CAN FD messages
Library: Vehicle Network Toolbox / CAN FD Communication

Embedded Coder Support Package for Texas Instruments
C2000 Processors / Target Communication
Simulink Real-Time / CAN / CAN-FD MSG blocks

Description
The CAN FD Unpack block unpacks a CAN FD message into signal data by using the specified output
parameters at every time step. Data is output as individual signals.

To use this block, you also need a license for Simulink software.

The CAN FD Unpack block supports:

• Simulink Accelerator mode. You can speed up the execution of Simulink models. For more
information, see “Design Your Model for Effective Acceleration” (Simulink).

Tip

• To process every message coming through a channel, it is recommended that you use the CAN FD
Unpack block in a function trigger subsystem. See “Using Triggered Subsystems” (Simulink).

• To work with J1939 messages, use the blocks in the J1939 Communication block library instead of
this block. See “J1939 Communication”.

Ports
Input

Msg — CAN FD message input
CAN_FD_MESSAGE_BUS

This block has one input port, Msg. The CAN FD Unpack block takes the specified input CAN
messages and unpacks their signal data to separate outputs.

The block supports the following input signal data types: single, double, int8, int16, int32, int64,
uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

13 Blocks

13-34

Output

Data — CAN message output
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The CAN FD Unpack block has one output port by default. The number of data output ports is
dynamic and depends on the number of signals you specify for the block to output. For example, if
your block has four signals, it has four output ports, labeled by signal name.

For manually or CANdb specified signals, the default output signal data type is double. To specify
other types, use a Signal Specification block. This allows the block to support the following output
signal data types: single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, and boolean.
The block does not support fixed-point types.

Additional output ports can be added by the options in the parameters Output ports pane.

Parameters
Data to output as — Select your data signal
raw data (default) | manually specify signals | CANdb specified signals

• raw data: Output data as a uint8 vector array. If you select this option, you specify only the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

The conversion formula is:

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled signal value.
• manually specified signals: You can specify data signals. If you select this option, use the

Signals table to create your signals message manually. The number of output ports on your block
depends on the number of signals that you specify. For example, if you specify four signals, your
block has four output ports.

• CANdb specified signals: You can specify a CAN database file that contains data signals. If
you select this option, select a CANdb file. The number of output ports on your block depends on
the number of signals specified in the CANdb file. For example, if the selected message in the
CANdb file has four signals, your block has four output ports.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal
definitions specified in the CANdb file populate the Message section of the dialog box. The signals
specified in the CANdb file populate the Signals table. File names that contain non-alphanumeric
characters such as equal signs, ampersands, and so forth, are not valid CAN database file names. You

 CAN FD Unpack

13-35

can use periods in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

Message list — Message list
array of character vectors

This option is available if you specify in the Data to be output as list that your data is to be output
as a CANdb file and you select a CANdb file in the CANdb file field. You can select the message that
you want to view. The Signals table then displays the details of the selected message.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — Message name
CAN Msg (default) | character vector

Specify a name for your message. The default is Msg. This option is available if you choose to output
raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — Identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to output raw data or manually specify signals. For CANdb-
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

Identifier — Message identifier
0 (default) | 0 .. 536870911

Specify your message ID. This number must be a integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify –1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to output raw
data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

13 Blocks

13-36

Length (bytes) — CAN message length
8 (default) | 0 .. 8

Specify the length of your message. For CAN messages the value can be 0-8 bytes; for CAN FD the
value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified signals
for your output data, the CANdb file defines the length of your message. This option is available if you
choose to output raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8', '12', '16', '20', '24', '32', '48', '64'
Default: '8'

Add signal — Add CAN signal

Add a signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

If you choose to specify signals manually or define signals by using a CANdb file, this table appears.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal that you create has these values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits
in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

 CAN FD Unpack

13-37

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least-significant bit to the most-significant bit and proceeding to the next higher byte as
you cross a byte boundary. For example, if you pack one byte of data in little-endian format,
with the start bit at 20, the data bit table resembles this figure.

Bit 3

3

911

19

27

35

43

51

Bit 0

0

8

16

24

32

40

48

56

1

Bit 1

17

25

33

41

49

57

Bit 2

2

10

18

26

34

42

50

5859

Bit 4

4

12

20

28

36

44

52

60

Bit 5

5

13

21

29

37

45

53

61

Bit 6

6

14

22

30

38

46

54

62

Bit 7

7

15

23

31

39

47

55

63

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Bit Number

D
at

a
By

te
 N

um
be

r

Data begins at the least significant
bit and starts at 20.

Data is written up to the most
significant bit and ends at 27.

LSB

MSB

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest
Address

• BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from
the least-significant bit to the most-significant bit and proceeding to the next lower byte as you

13 Blocks

13-38

cross a byte boundary. For example, if you pack one byte of data in big-endian format, with the
start bit at 20, the data bit table resembles this figure.

Bit 3

3

911

19

27

35

43

51

Bit 0

0

8

16

24

32

40

48

56

1

Bit 1

17

25

33

41

49

57

Bit 2

2

10

18

26

34

42

50

5859

Bit 4

4

12

20

28

36

44

52

60

Bit 5

5

13

21

29

37

45

53

61

Bit 6

6

14

22

30

38

46

54

62

Bit 7

7

15

23

31

39

47

55

63

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Bit Number
D

at
a

By
te

 N
um

be
r

Data begins at the least significant
bit and starts at 20.

Data is written up to the most
significant bit and ends at 11.

LSB

MSB

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

 CAN FD Unpack

13-39

Note: If you have a double signal that does not align exactly to the message byte boundaries,
to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block unpacks the signals from the message at each time step:

• Standard: The signal is unpacked at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)

at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block unpacks Signal-B along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block unpacks Signal-C along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
unpack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). For more information, see the Data input as parameter conversion formula.

Offset
Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. For more information, see the Data input as parameter conversion formula.

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

13 Blocks

13-40

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Output identifier — Add CAN ID output port
off (default) | on

Select this option to output a CAN message identifier. The data type of this port is uint32.

Programmatic Use
Block Parameter: IDPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output timestamp — Add Timestamp output port
off (default) | on

Select this option to output the message timestamp. This value indicates when the message was
received, measured as the number of seconds elapsed since the model simulation began. This option
adds a new output port to the block. The data type of this port is double.

Programmatic Use
Block Parameter: TimestampPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output error — Add Error output port
off (default) | on

Select this option to output the message error status. This option adds a new output port to the block.
An output value of 1 on this port indicates that the incoming message is an error frame. If the output
value is 0, there is no error. The data type of this port is uint8.

Programmatic Use
Block Parameter: ErrorPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output remote — Add Remote output port
off (default) | on

Select this option to output the message remote frame status. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: RemotePort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output length — Add Length output port
off (default) | on

 CAN FD Unpack

13-41

Select this option to output the length of the message in bytes. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: LengthPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output status — Add Status output port
off (default) | on

Select this option to output the message received status. The status is 1 if the block receives new
message and 0 if it does not. This option adds a new output port to the block. The data type of this
port is uint8.

Programmatic Use
Block Parameter: StatusPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output Bit Rate Switch (BRS) — Add BRS output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message bit rate switch. This option adds
a new output port to the block. The data type of this port is boolean.

Programmatic Use
Block Parameter: BRSPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output Error Status Indicator (ESI) — Add ESI output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message error status. This option adds a
new output port to the block. The data type of this port is boolean.

Programmatic Use
Block Parameter: ESIPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output Data Length Code (DLC) — Add DLC output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message data length. This option adds a
new output port to the block. The data type of this port is double.

Programmatic Use
Block Parameter: DLCPort
Type: string | character vector
Values: 'off' | 'on'

13 Blocks

13-42

Default: 'off'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CAN FD Configuration | CAN FD Pack | CAN FD Receive | CAN Unpack | CAN Unpack

Functions
canFDMessageBusType

Topics
“Design Your Model for Effective Acceleration” (Simulink)
“Composite Signals” (Simulink)

Introduced in R2018a

 CAN FD Unpack

13-43

CAN Log
Log received CAN messages
Library: Vehicle Network Toolbox / CAN Communication

Description
The CAN Log block logs CAN messages from the CAN network, or messages sent to the block input
port, to a .mat file. You can load the saved messages into MATLAB for further analysis or into
another Simulink model.

Configure your CAN Log block to log from the Simulink input port. For more information, see “Log
and Replay CAN Messages” on page 14-73.

The CAN Log block appends the specified filename with the current date and time, creating unique
log files for repeated logging.

If you want to use messages logged using Simulink blocks in the MATLAB Command window, use
canMessage to convert messages to the correct format.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Note You cannot have more than one CAN Log block in a model using the same PEAK-System device
channel.

Other Supported Features

The CAN Log block supports the use of Simulink Accelerator and Rapid Accelerator mode. Using this
feature, you can speed up the execution of Simulink models. For more information on this feature, see
the Simulink documentation.

The CAN Log block supports the use of code generation along with the packNGo function to group
required source code and dependent shared libraries.

Code Generation

Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

13 Blocks

13-44

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Ports
Input

CAN Msg — CAN messages to log
CAN_MESSAGE | CAN_MESSAGE_BUS

The CAN Msg input port is available when the Log messages from parameter is set to Input
port. Provide an input from another block as a CAN_MESSAGE or a Simulink signal bus of type
CAN_MESSAGE_BUS.
Data Types: CAN_MESSAGE | CAN_MESSAGE_BUS

Parameters
File name — Log file location and name
untitled.mat (default) | file name

Enter the name and path of the file to log CAN messages to, or click Browse to browse to a file
location.

The model appends the log file name with the current date and time in the format YYYY-MMM-
DD_hhmmss. Specify a unique name to differentiate between your files for repeated logging.

Variable name — Variable name for CAN message in log file
ans (default) | variable name

Specify the name for the variable saved in the MAT-file that holds the CAN message information.

Maximum number of messages to log — Limit quantity of messages
10000 (default) | numeric

 CAN Log

13-45

Specify the maximum number of messages this block can log from the selected device or port. The
specified value must be a positive integer. The default value is 10000 messages. The log file saves the
most recent messages up to the specified maximum number.

Log messages from — Source of messages
CAN Bus (default) | Input port

Select the source of the messages logged by the block. To log messages from the CAN bus network,
select CAN Bus, then specify a Device. To log messages from another block in the model, select
Input port, which adds an inport port to the block.

Device — CAN device and channel
list option

Select the device on the CAN network that you want to log messages from. This field is available only
if you select CAN Bus for the Log messages from option.

Sample time — Block sampling time in simulation
0.01 (default) | numeric

Specify the sampling time of the block during simulation. This value defines the frequency at which
the CAN Log block runs during simulation. If the block is inside a triggered subsystem or to inherit
sample time, you can specify –1 as the sample time. You can also specify a MATLAB variable for
sample time. The default value is 0.01 simulation seconds. For more information, see “Timing in
Hardware Interface Models” on page 8-21.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates code with limited portability that runs only on the host computer. See “Code
Generation” on page 13-44.

See Also
Blocks
CAN Configuration | CAN Replay

Introduced in R2011b

13 Blocks

13-46

CAN Pack
Pack individual signals into CAN message
Library: Vehicle Network Toolbox / CAN Communication

Embedded Coder / Embedded Targets / Host Communication
Embedded Coder Support Package for Texas Instruments
C2000 Processors / Target Communication
Simulink Real-Time / CAN / CAN MSG blocks

Description
The CAN Pack block loads signal data into a CAN message at specified intervals during the
simulation.

To use this block, you must have a license for Simulink software.

The CAN Pack block supports:

• Simulink Accelerator rapid accelerator mode. You can speed up the execution of Simulink models.
• Model referencing. Your model can include other Simulink models as modular components.

For more information, see “Design Your Model for Effective Acceleration” (Simulink).

Tip

• This block can be used to encode the signals of J1939 parameter groups up to 8 bytes. However, to
work with J1939 messages, it is preferable to use the blocks in the J1939 Communication block
library instead of this block. See “J1939 Communication”.

Ports
Input

Data — CAN message signal input
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The CAN Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals you specify for the block. For example, if your message has four
signals, the block can have four input ports.

The block supports the following input signal data types: single, double, int8, int16, int32, int64,
uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

Code generation to deploy models to targets. If your signal information consists of signed or unsigned
integers greater than 32 bits long, code generation is not supported.

 CAN Pack

13-47

Output

CAN Msg — CAN message output
CAN_MESSAGE | CAN_MESSAGE_BUS

This block has one output port, CAN Msg. The CAN Pack block takes the specified input signals and
packs them into a CAN message. The output data type is determined by the Output as bus
parameter setting.

Parameters
Data input as — Select your data signal
raw data (default) | manually specified signals | CANdb specified signals

• raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. all other signal parameter fields are unavailable. This option opens only one input
port on your block.

The conversion formula is:

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal and raw_value is the packed signal
value.

• manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on the
number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block inputs
depends on the number of signals specified in the CANdb file for the selected message.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input through a CANdb file in the Data is
input as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message.

File names that contain non-alphanumeric characters such as equal signs, ampersands, and so on are
not valid CAN database file names. You can use periods in your database name. Before you use the
CAN database files, rename them with non-alphanumeric characters.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

13 Blocks

13-48

Message list — CAN message list
array of character vectors

This option is available if you specify that your data is input through a CANdb file in the Data is
input as field and you select a CANdb file in the CANdb file field. Select the message to display
signal details in the Signals table.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — CAN message name
CAN Msg (default) | character vector

Specify a name for your CAN message. The default is CAN Msg. This option is available if you choose
to input raw data or manually specify signals. This option is not available if you choose to use signals
from a CANdb file.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to input raw data or manually specify signals. For CANdb
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

CAN Identifier — CAN message ID
0 (default) | 0 to 536870911

Specify your CAN message ID. This number must be a positive integer from 0 through 2047 for a
standard identifier and from 0 through 536870911 for an extended identifier. You can also specify
hexadecimal values by using the hex2dec function. This option is available if you choose to input raw
data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN message length
8 (default) | 0 to 8

Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your data input, the CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw data or manually specify signals.

 CAN Pack

13-49

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8'
Default: '8'

Remote frame — CAN message as remote frame
off (default) | on

Specify the CAN message as a remote frame.

Programmatic Use
Block Parameter: Remote
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output as bus — CAN message as bus
off (default) | on

Select this option for the block to output CAN messages as a Simulink bus signal. For more
information on Simulink bus objects, see “Composite Signals” (Simulink).

Programmatic Use
Block Parameter: BusOutput
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Add signal — Add CAN signal

Add a new signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

This table appears if you choose to specify signals manually or define signals by using a CANdb file.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals in this table. Each signal that you
create has these values:

13 Blocks

13-50

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least significant bit, to the most significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN Pack

13-51

Bit 3

3

911

19

27

35

43

51

Bit 0

0

8

16

24

32

40

48

56

1

Bit 1

17

25

33

41

49

57

Bit 2

2

10

18

26

34

42

50

5859

Bit 4

4

12

20

28

36

44

52

60

Bit 5

5

13

21

29

37

45

53

61

Bit 6

6

14

22

30

38

46

54

62

Bit 7

7

15

23

31

39

47

55

63

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Bit Number

D
at

a
By

te
 N

um
be

r

Data begins at the least significant
bit and starts at 20.

Data is written up to the most
significant bit and ends at 27.

LSB

MSB

Little-Endian Byte Order Counted from the Least-Significant Bit to the Highest
Address

• BE: Where byte order is in big-endian format (Motorola). In this format you count bits from the
least-significant bit to the most-significant bit. For example, if you pack one byte of data in big-
endian format, with the start bit at 20, the data bit table resembles this figure.

13 Blocks

13-52

Bit 3

3

911

19

27

35

43

51

Bit 0

0

8

16

24

32

40

48

56

1

Bit 1

17

25

33

41

49

57

Bit 2

2

10

18

26

34

42

50

5859

Bit 4

4

12

20

28

36

44

52

60

Bit 5

5

13

21

29

37

45

53

61

Bit 6

6

14

22

30

38

46

54

62

Bit 7

7

15

23

31

39

47

55

63

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Bit Number

D
at

a
By

te
 N

um
be

r

Data begins at the least significant
bit and starts at 20.

Data is written up to the most
significant bit and ends at 11.

LSB

MSB

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block packs the signals into the CAN message at each time step:

 CAN Pack

13-53

• Standard: The signal is packed at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at

run time matches the configured Multiplex value of this signal.

For example, a message has these signals with the following types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block packs Signal-B along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block packs Signal-C along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide must match the Multiplexor signal value at run time for the block to pack
the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. For more information, see the Data input as parameter conversion
formula.

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. For more information, see the Data input as parameter conversion
formula.

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed the settings.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

13 Blocks

13-54

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CAN Unpack | CAN FD Pack

Topics
“Design Your Model for Effective Acceleration” (Simulink)

Introduced in R2009a

 CAN Pack

13-55

CAN Receive
Receive CAN messages from specified CAN device
Library: Vehicle Network Toolbox / CAN Communication

Description
The CAN Receive block receives messages from the CAN network and delivers them to the Simulink
model. It outputs one message or all messages at each timestep, depending on the block parameters.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

The CAN Receive block stores CAN messages in a first-in, first-out (FIFO) buffer. The FIFO buffer
delivers the messages to your model in the queued order at every timestep.

Note You cannot have more than one CAN Receive block in a model using the same PEAK-System
device channel.

Other Supported Features

The CAN Receive block supports the use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models. For more information on this feature, see the Simulink
documentation.

The CAN Receive block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries.

Code Generation

Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

13 Blocks

13-56

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Ports
Output

CAN Msg — Received CAN messages
CAN_MESSAGE | bus

The CAN Msg output port contains one or more packed CAN messages received at that particular
timestep, output as a signal bus or CAN_MESSAGE. The output includes either one or all messages for
that timestep, depending on the setting of Number of messages received at each timestep.
Data Types: CAN_MESSAGE | bus

f() — Function-call event output
function-call event

The f() output port is a trigger to a Function-Call subsystem. If the block receives a new message, it
triggers a Function-Call from this port. You can then connect to a Function-Call Subsystem to unpack
and process a message.
Data Types: function-call event

Parameters

Tip Configure your CAN Configuration block before you configure the CAN Receive block
parameters.

Device — CAN device and channel
list option

Select from the list the CAN device and a channel on the device you want to receive CAN messages
from. This field lists all the devices installed on the system. It displays the vendor name, the device
name, and the channel ID. The default is the first available device on your system.

Programmatic Use
Block Parameter: Device
Type: character vector, string

 CAN Receive

13-57

Standard IDs Filter — Limit or allow messages based on standard ID
Allow all (default) | Allow only | Block all

Select the filter for standard IDs. Choices are:

• Allow all (default): Allows all standard IDs to pass the filter.
• Allow only: Allows only the ID or range of IDs specified in the text field, specified as a single ID

or an array of IDs. You can also specify disjointed IDs or arrays separated by a comma. For
example, to allow IDs 400 through 500, and 600 through 650, enter [[400:500],[600:650]].
Standard IDs must be positive integers from 0 to 2047. You can also specify hexadecimal values
with the hex2dec function.

• Block all: Blocks all standard IDs from passing the filter.

Programmatic Use
Block Parameter: StdIDsCombo
Type: character vector, string
Values: 'Allow all' | 'Allow only' | 'Block all'
Default: 'Allow all'

If using 'Allow only', set the filter values with the following:
Block Parameter: StandardIDs
Type: character vector, string
Values: integer scalar or row vector

Extended IDs Filter — Limit or allow messages based on extended ID
Allow all (default) | Allow only | Block all

Select the filter on this block for extended IDs. Choices are:

• Allow all (default): Allows all extended IDs to pass the filter.
• Allow only: Allows only those IDs specified in the text field. Allows only the ID or range of IDs
specified in the text field, specified as a single ID or an array of IDs. You can also specify disjointed
IDs or arrays separated by a comma. For example, to accept IDs 3000 through 3500, and 3600
through 3620, enter [[3000:3500],[3600:3620]]. Extended IDs must be positive integers
from 0 to 536870911. You can also specify hexadecimal values using the hex2dec function.

• Block all: Blocks all extended IDs from passing the filter.

Programmatic Use
Block Parameter: ExtIDsCombo
Type: character vector, string
Values: 'Allow all' | 'Allow only' | 'Block all'
Default: 'Allow all'
Block Parameter: ExtendedIDs
Type: character vector, string
Values: integer scalar or row vector

Sample time — Block execution rate
0.01 (default)

Specify the sample time of the block during the simulation. This is the rate at which the block is
executed during simulation. The default value is 0.01 simulation seconds. For more information, see
“Timing in Hardware Interface Models” on page 8-21.

13 Blocks

13-58

Programmatic Use
Block Parameter: SampleTime
Type: character vector, string
Values: double
Default: '0.01'

Number of messages received at each timestep — Receive one or all messages
1 (default) | all

Select how many messages the block receives at each specified timestep. Valid choices are:

• all (default): The CAN Receive block delivers all available messages in the FIFO buffer to the
model during a specific timestep. The block generates one function call for each delivered
message. The output port always contains one CAN message at a time.

• 1: The CAN Receive block delivers one message per timestep from the FIFO buffer to the model.

If the block does not receive any messages before the next timestep, it outputs the last received
message.

Programmatic Use
Block Parameter: MsgsPerTimestep
Type: character vector, string
Values: '1' | 'all'
Default: '1'

Output as bus — Output Simulink bus signal
off (default) | on

Output a native Simulink bus signal. For more information on Simulink bus objects, see “Composite
Signals” (Simulink).

Programmatic Use
Block Parameter: BusOutput
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates code with limited portability that runs only on the host computer. See “Code
Generation” on page 13-56.

See Also
Blocks
CAN Configuration | CAN Unpack

Functions
canMessageBusType

 CAN Receive

13-59

Introduced in R2009a

13 Blocks

13-60

CAN Replay
Replay logged CAN messages
Library: Vehicle Network Toolbox / CAN Communication

Description
The CAN Replay block replays logged messages from a .mat file to a CAN network or to Simulink.
You need a CAN Configuration block to replay to the network.

To replay messages logged in the MATLAB Command window in your Simulink model, convert them
into a compatible format using canMessageReplayBlockStruct and save the result to a separate
file. For more information, see “Log and Replay CAN Messages” on page 14-73.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Replay Timing

When you replay logged messages, Simulink uses the original timestamps on the messages. When you
replay to a network, the timestamps correlate to real time, and when you replay to the Simulink input
port it correlates to simulation time. If the timestamps in the messages are all 0, all messages are
replayed as soon as the simulation starts, because simulation time and real time will be ahead of the
timestamps in the replayed messages.

Other Supported Features

The CAN Replay block supports the use of Simulink Accelerator Rapid Accelerator mode. Using this
feature, you can speed up the execution of Simulink models.

For more information on this feature, see the Simulink documentation.

The CAN Replay block supports the use of code generation along with the packNGo function to group
required source code and dependent shared libraries. For more information, see “Code Generation”
on page 13-61.

Code Generation

Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.

Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).

 CAN Replay

13-61

Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Ports
Output

CAN Msg — Replayed CAN messages
CAN_MESSAGE | CAN_MESSAGE_BUS

This output port contains a packed CAN message logged at that particular timestep, output as a
CAN_MESSAGE or signal bus of type CAN_MESSAGE_BUS.
Data Types: CAN_MESSAGE | CAN_MESSAGE_BUS

f() — Function-call event output
function-call event

This port provides a trigger to a Function-Call subsystem when the block receives a new message.
You can connect it to a Function-Call Subsystem to unpack and process the message.
Data Types: function-call event

Parameters

Tip Configure your CAN Configuration block before you configure the CAN Receive block
parameters.

File name — Path and name of MAT-file with messages
untitled.mat (default) | file name

Specify the name and path of the file that contains logged CAN messages that you can replay. You can
click Browse to browse to a file location and select the file.

13 Blocks

13-62

Variable name — Variable in MAT-file holding messages
ans (default) | variable

Specify the variable saved in the MAT-file that holds the CAN message information.

Number of times to replay messages — Repeat value
Inf (default) | integer

Specify the number of times you want the message replayed in your model. You can specify any
positive integer, including Inf. Specifying Inf continuously replays messages until simulation stops.

Replay messages to — Specify output location
CAN Bus (default) | Output port

Specify if the model is replaying messages to the CAN network or an output port. When replaying to
the CAN network, you must also select a Device.

Device — CAN device and channel
device list option

Select the device on the CAN network to replay messages to. This field is unavailable if you select
Output port for the Replay message to parameter.

Sample time — Block execution rate
0.01 (default) | numeric

Specify the sampling time of the block during simulation. This value defines the frequency at which
the CAN Replay block runs during simulation. If the block is inside a triggered subsystem or to
inherit sample time, you can specify –1 as the sample time. You can also specify a MATLAB variable
for sample time. The default value is 0.01 simulation seconds. For more information, see “Timing in
Hardware Interface Models” on page 8-21.

Output as bus — Enable signal bus output
off (default) | on

Select this option for the block to output CAN messages as a Simulink bus signal. For more
information on Simulink bus objects, see “Composite Signals” (Simulink).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates code with limited portability that runs only on the host computer. See “Code
Generation” on page 13-61.

See Also
Blocks
CAN Log

Functions
canMessageBusType | canMessageReplayBlockStruct

 CAN Replay

13-63

Introduced in R2011b

13 Blocks

13-64

CAN Transmit
Transmit CAN message to selected CAN device
Library: Vehicle Network Toolbox / CAN Communication

Description
The CAN Transmit block transmits messages to the CAN network using the specified CAN device. The
CAN Transmit block can transmit a single message or an array of messages during a given timestep.
To transmit an array of messages, use a mux (multiplex) block from the Simulink block library.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

The CAN Transmit block has one input port. This port accepts a CAN message that was packed using
the CAN Pack block. It has no output ports.

CAN is a peer-to-peer network, so when transmitting messages on a physical bus at least one other
node must be present to properly acknowledge the message. Without another node, the transmission
will fail as an error frame, and the device will continually retry to transmit.

Other Supported Features

The CAN Transmit block supports the use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models. For more information on this feature, see the Simulink
documentation.

The CAN Transmit block supports the use of code generation along with the packNGo function to
group required source code and dependent shared libraries.

Code Generation

Vehicle Network Toolbox Simulink blocks allow you to generate code, enabling models containing
these blocks to run in Accelerator, Rapid Accelerator, External, and Deployed modes.
Code Generation with Simulink Coder

You can use Vehicle Network Toolbox, Simulink Coder, and Embedded Coder software together to
generate code on the host end that you can use to implement your model. For more information on
code generation, see “Build Process” (Simulink Coder).
Shared Library Dependencies

The block generates code with limited portability. The block uses precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices. With this block, you can use the packNGo
function supported by Simulink Coder to set up and manage the build information for your models.
The packNGo function allows you to package model code and dependent shared libraries into a zip
file for deployment. You do not need MATLAB installed on the target system, but the target system
needs to be supported by MATLAB.

 CAN Transmit

13-65

To set up packNGo:

set_param(gcs,'PostCodeGenCommand','packNGo(buildInfo)');

In this example, gcs is the current model that you want to build. Building the model creates a zip file
with the same name as model name. You can move this zip file to another machine and there build the
source code in the zip file to create an executable which can run independent of MATLAB and
Simulink. The generated code compiles with both C and C++ compilers. For more information, see
“Build Process Customization” (Simulink Coder).

Note On Linux platforms, you need to add the folder where you unzip the libraries to the
environment variable LD_LIBRARY_PATH.

Ports
Input

CAN Msg — CAN message to transmit
packed CAN message

CAN message as packed by the CAN Pack block, input as a CAN_MESSAGE or a Simulink signal bus.
Data Types: CAN_MESSAGE | bus

Parameters
Device — CAN device and channel
list option

Select the CAN device and channel for transmitting CAN messages to the network. The list of options
shows all the devices installed on the system. It displays the vendor name, the device name, and the
channel ID. The default is the first available device on your system.

Note: When using PEAK-System devices, CAN Transmit blocks in multiple enabled subsystems might
skip some messages. If possible, replace the enabled subsystems with a different type of conditional
subsystem, such as an if-action, switch-case-action, or triggered subsystem; or redesign your model
so that all the CAN Transmit blocks are contained within a single enabled subsystem.

Programmatic Use
Block Parameter: Device
Type: character vector, string

Transmit Options: On data change — Enable event-based transmission when data
changes
'off' (default) | 'on'

When event-based transmission is enabled, messages are transmitted only at those time steps when a
change in message data is detected. When the input data matches the most recent transmission for a
given message ID, the message is not re-transmitted.

Event and periodic transmission can both be enabled to work together simultaneously. If neither is
selected, the default behavior is to transmit the current input at each time step.

13 Blocks

13-66

Programmatic Use
Block Parameter: EnableEventTransmit
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Transmit Options: Periodic — Enable periodic transmission
'off' (default) | 'on'

Select this option to enable periodic transmission of the message on the configured channel at the
specified message period. The period references real time, regardless of the Simulink model time
step size (fundamental sample time) or block execution sample time. This is equivalent to the
MATLAB function transmitPeriodic.

The periodic transmission is a nonbuffered operation. Only the last CAN message or set of muxed
messages present at the input of the CAN Transmit block is sent when the time period occurs.

Programmatic Use
Block Parameter: EnablePerioicTransmit
Type: character vector, string
Values: 'off' | 'on'
Default: 'off'

Transmit Options: Message period — Period of message transmission rate
1.000 (default) | positive numeric scalar

Specify a message transmission period in seconds. This value is used to transmit the message in the
specified period. By default this value is 1.000 seconds.

Programmatic Use
Block Parameter: MessagePeriod
Type: character vector, string
Values: double
Default: '1.000'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block generates code with limited portability that runs only on the host computer. See “Code
Generation” on page 13-65.

See Also
Blocks
CAN Configuration | CAN Pack

Introduced in R2009a

 CAN Transmit

13-67

CAN Unpack
Unpack individual signals from CAN messages
Library: Vehicle Network Toolbox / CAN Communication

Embedded Coder / Embedded Targets / Host Communication
Embedded Coder Support Package for Texas Instruments
C2000 Processors / Target Communication
Simulink Real-Time / CAN / CAN MSG blocks

Description
The CAN Unpack block unpacks a CAN message into signal data using the specified output
parameters at every time step. Data is output as individual signals.

To use this block, you also need a license for Simulink software.

The CAN Unpack block supports:

• The use of Simulink Accelerator Rapid Accelerator mode. Using this feature, you can speed up the
execution of Simulink models.

• The use of model referencing. Using this feature, your model can include other Simulink models
as modular components.

For more information on these features, see “Design Your Model for Effective Acceleration”
(Simulink).

Tip

• To process every message coming through a channel, it is recommended that you use the CAN
Unpack block in a function trigger subsystem. See “Using Triggered Subsystems” (Simulink).

• This block can be used to decode the signals of J1939 parameter groups up to 8 bytes. However, to
work with J1939 messages, it is preferable to use the blocks in the J1939 Communication block
library instead of this block. See “J1939 Communication”.

Ports
Input

CAN Msg — CAN message input
CAN_MESSAGE | CAN_MESSAGE_BUS

This block has one input port, CAN Msg. The block takes the specified input CAN messages and
unpacks their signal data to separate outputs.

The block supports the following signal data types: single, double, int8, int16, int32, int64, uint8,
uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

13 Blocks

13-68

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

Output

Data — CAN signal output
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The block has one output port by default. The number of output ports is dynamic and depends on the
number of signals that you specify for the block to output. For example, if your message has four
signals, the block can have four output ports.

For signals specified manually or by a CANdb, the default output data type for CAN signals is double.
To specify other types, use a Signal Specification block. This allows the block to support the following
output signal data types: single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, and
boolean. The block does not support fixed-point types.

Additional output ports can be added by selecting the options in the parameters Output ports pane.
For more information, see the parameters Output identifier, Output timestamp, Output
error, Output remote, Output length, and Output status.

Parameters
Data to output as — Select your data signal
raw data (default) | manually specify signals | CANdb specified signals

• raw data: Output data as a uint8 vector array. If you select this option, you specify only the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

The conversion formula is:

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled signal value.
• manually specified signals: You can specify data signals. If you select this option, use the

Signals table to create your signals message manually. The number of output ports on your block
depends on the number of signals that you specify. For example, if you specify four signals, your
block has four output ports.

• CANdb specified signals: You can specify a CAN database file that contains data signals. If
you select this option, select a CANdb file. The number of output ports on your block depends on
the number of signals specified in the CANdb file. For example, if the selected message in the
CANdb file has four signals, your block has four output ports.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal

 CAN Unpack

13-69

definitions specified in the CANdb file populate the Message section of the dialog box. The signals
specified in the CANdb file populate Signals table. File names that contain non-alphanumeric
characters such as equal signs, ampersands, and so forth are not valid CAN database file names. You
can use periods in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

Message list — CAN message list
array of character vectors

This option is available if you specify in the Data to be output as list that your data is to be output
as a CANdb file and you select a CANdb file in the CANdb file field. You can select the message that
you want to view. The Signals table then displays the details of the selected message.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — CAN message name
CAN Msg (default) | character vector

Specify a name for your CAN message. The default is CAN Msg. This option is available if you choose
to output raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to output raw data or manually specify signals. For CANdb-
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

CAN Identifier — CAN message identifier
0 (default) | 0 to 536870911

Specify your CAN message ID. This number must be a integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify -1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values by using the hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier

13 Blocks

13-70

Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN message length
8 (default) | 0 to 8

Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your output data, the CANdb file defines the length of your message. Otherwise, this
field defaults to 8. This option is available if you choose to output raw data or manually specify
signals.

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8'
Default: '8'

Add signal — Add CAN signal

Add a signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

If you choose to specify signals manually or define signals by using a CANdb file, this table appears.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal that you create has these values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

 CAN Unpack

13-71

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

Bit 3

3

911

19

27

35

43

51

Bit 0

0

8

16

24

32

40

48

56

1

Bit 1

17

25

33

41

49

57

Bit 2

2

10

18

26

34

42

50

5859

Bit 4

4

12

20

28

36

44

52

60

Bit 5

5

13

21

29

37

45

53

61

Bit 6

6

14

22

30

38

46

54

62

Bit 7

7

15

23

31

39

47

55

63

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Bit Number

D
at

a
By

te
 N

um
be

r

Data begins at the least significant
bit and starts at 20.

Data is written up to the most
significant bit and ends at 27.

LSB

MSB

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest
Address

• BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from
the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
big-endian format, with the start bit at 20, the data bit table resembles this figure.

13 Blocks

13-72

Bit 3

3

911

19

27

35

43

51

Bit 0

0

8

16

24

32

40

48

56

1

Bit 1

17

25

33

41

49

57

Bit 2

2

10

18

26

34

42

50

5859

Bit 4

4

12

20

28

36

44

52

60

Bit 5

5

13

21

29

37

45

53

61

Bit 6

6

14

22

30

38

46

54

62

Bit 7

7

15

23

31

39

47

55

63

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Bit Number

D
at

a
By

te
 N

um
be

r

Data begins at the least significant
bit and starts at 20.

Data is written up to the most
significant bit and ends at 11.

LSB

MSB

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block unpacks the signals from the CAN message at each time step:

 CAN Unpack

13-73

• Standard: The signal is unpacked at each time step.
• Multiplexor: The Multiplexor signal or the mode signal is unpacked. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)

at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block unpacks Signal-B along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block unpacks Signal-C along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide must match the Multiplexor signal value at run time for the block to unpack
the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). For more information, see the Data input as parameter conversion formula.

Offset
Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. For more information, see the Data input as parameter conversion formula.

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Output identifier — Add CAN ID output port
off (default)

Select this option to output a CAN message identifier. The data type of this port is uint32.

13 Blocks

13-74

Programmatic Use
Block Parameter: IDPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output timestamp — Add Timestamp output port
off (default) | on

Select this option to output the message timestamp. This value indicates when the message was
received, measured as the number of seconds elapsed since the model simulation began. This option
adds a new output port to the block. The data type of this port is double.

Programmatic Use
Block Parameter: TimestampPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output error — Add Error output port
off (default) | on

Select this option to output the message error status. This option adds a new output port to the block.
An output value of 1 on this port indicates that the incoming message is an error frame. If the output
value is 0, there is no error. The data type of this port is uint8.

Programmatic Use
Block Parameter: ErrorPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output remote — Add Remote output port
off (default) | on

Select this option to output the message remote frame status. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: RemotePort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output length — Add Length output port
off (default) | on

Select this option to output the length of the message in bytes. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: LengthPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

 CAN Unpack

13-75

Output status — Add Status output port
off (default) | on

Select this option to output the message received status. The status is 1 if the block receives a new
message and 0 if it does not. This option adds a new output port to the block. The data type of this
port is uint8.

Programmatic Use
Block Parameter: StatusPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CAN Pack | CAN FD Unpack

Topics
“Design Your Model for Effective Acceleration” (Simulink)

Introduced in R2009a

13 Blocks

13-76

J1939 CAN Transport Layer
Transport J1939 messages via CAN
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 CAN Transport Layer block allows J1939 communication via a CAN bus. This block
associates a user-defined J1939 network configuration with a connected CAN device. Use one block
for each J1939 Network Configuration block in your model.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use this block.

Other Supported Features

The J1939 communication blocks support the use of Simulink Accelerator and Rapid Accelerator
mode. Using this feature, you can speed up the execution of Simulink models. For more information
on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment capabilities.
Code generation requires the Microsoft® C++ compiler.

Parameters
Config name — J1939 network configuration name
configuration list option

The name of the J1939 Network Configuration block to associate this transport layer block with.

Device — CAN device
device list option

The CAN device, chosen from all connected CAN devices.

Bus speed — Speed of CAN bus
250000 (default) | 500000

Speed of the CAN bus in bits per second, specified as one of the two rates supported by the J1939
protocol, 250000 or 500000. The default is 250000.

Sample time — Simulation refresh rate
0.01 (default) | numeric

Simulation refresh rate, specified as the sampling time of the block during simulation. This value
defines the frequency at which the J1939 CAN Transport Layer block runs during simulation. For

 J1939 CAN Transport Layer

13-77

information about simulation sample timing, see, “Timing in Hardware Interface Models” on page 8-
21. If the block is inside a triggered subsystem or inherits a sample time, specify a value of -1. You
can also specify a MATLAB variable for sample time. The default value is 0.01 simulation seconds.

See Also
Blocks
J1939 Network Configuration | J1939 Node Configuration | J1939 Receive | J1939 Transmit

Introduced in R2015b

13 Blocks

13-78

J1939 Network Configuration
Define J1939 network configuration name and database file
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Network Configuration block is where you define a configuration name and specify the
associated user-supplied J1939 database. You can include more than one block per model, each
corresponding to a unique configuration on the CAN bus.

To use this block, you must have a license for both Vehicle Network Toolbox and Simulink software.

The J1939 communication blocks support the use of Simulink accelerator and rapid accelerator
modes. You can speed up the execution of Simulink models by using these modes. For more
information on these modes, see the Simulink documentation.

The J1939 communication blocks also support code generation that have limited deployment
capabilities. Code generation requires a C++ compiler that is compatible with the code generation
target. For the current list of supported compilers, see Supported and Compatible Compilers.

Parameters
Configuration name — Define a name for this J1939 network configuration
ConfigX (default) | character vector

The default value is ConfigX, where the number X increases from 1 based on the number of existing
blocks.

Database File — Specify the J1939 database file name relative to the current folder
not set (default) | character vector

An example file name, enter J1939.dbc if the file is in the current folder; otherwise enter the full
path with the file name, such as C:\work\J1939.dbc.

The database file defines the J1939 parameter groups and nodes. This file must be in the DBC file
format defined by Vector Informatik GmbH.

See Also
J1939 CAN Transport Layer | J1939 Receive | J1939 Transmit | J1939 Node Configuration

Introduced in R2015b

 J1939 Network Configuration

13-79

https://www.mathworks.com/support/requirements/supported-compilers.html

J1939 Node Configuration
Configure J1939 node with address and network management attributes
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Node Configuration block is where you define a node and associate it with a specific
network configuration. Its Message information is read from the database for that configuration,
unless you are creating and configuring a custom node.

To use this block, you must have a license for both Vehicle Network Toolbox and Simulink software.

The J1939 communication blocks support the use of Simulink accelerator and rapid accelerator
modes. You can speed up the execution of Simulink models by using these modes. For more
information on these modes, see “Design Your Model for Effective Acceleration” (Simulink).

The J1939 communication blocks also support code generation that have limited deployment
capabilities. Code generation requires a C++ compiler that is compatible with the code generation
target. For the current list of supported compilers, see Supported and Compatible Compilers.

Ports
Output

Address — Returns the effective address of the node
int8

This optional output port exists when you select the Output current node address check box in the
dialog box.

AC Status — Indicates the success (1) or failure (0) of the node’s address claim
0 | 1

This optional output port exists when you select the Output address claim status check box in the
dialog box.

Parameters
Config name — ID of the J1939 network configuration to associate with this node
ConfigX (default) | character vector

To access the corresponding J1939 database, use this ID.

13 Blocks

13-80

https://www.mathworks.com/support/requirements/supported-compilers.html

Node name — name of this J1939 node
NodeX (default) | character vector

The available list shows none if no J1939 network configuration is found or no node is defined in the
associated database. If you are creating a custom node, the node name must be unique within its
J1939 network configuration.

Message — Nine network attributes as defined by the database file consistent with the
J1939 protocol
vector array

Unless you are defining a custom node, these parameters are read-only:

• Allow arbitrary address — Allow/disallow the node to switch to an arbitrary address if the
station address is not available. If this option is off and the node loses its address claim, the node
goes silent.

Node Address — Station address, decimal, 8-bit.
• Industry Group — Decimal, 3-bit.
• Vehicle System — Decimal, 7-bit.
• Vehicle System Instance — Identifies one particular occurrence of a given vehicle system in a

given network. If only one instance of a certain vehicle system exists in a network, then this field
must be set to 0 to define it as the first instance. Decimal, 4-bit.

• Function ID — Decimal, 8-bit.
• Function Instance — Identifies the particular occurrence of a given function in a vehicle system

and given network. If only one instance of a certain function exists in a network, then this field
must be set to 0 to define it as the first instance. Decimal, 5-bit.

• ECU Instance — This 3-bit field is used when multiple electronic control units (ECU) are involved
in performing a single function. If only one ECU is used for a particular controller application
(CA), then this field must be set to 0 to define it as the first instance.

• Manufacturer Code — Decimal, 11-bit.
• Identity Number — Decimal, 21-bit.

Sample time — Simulation refresh rate
0.01 (default) | double

Specify the sampling time of the block during simulation. This value defines the frequency at which
the J1939 Node Configuration updates its optional output ports. If the block is inside a triggered
subsystem or inherits a sample time, specify a value of -1. You can also specify a MATLAB variable
for sample time. The default value is 0.01 simulation seconds. For information about simulation
sample timing, see “Timing in Hardware Interface Models” on page 8-21.

Output current node address — Enable or disable the Address port display
off (default) | on

Enable or disable the Address output port to show the effective address. The effective address is
different from the predefined station address. If Allow arbitrary address is selected, a name conflict
occurs, and the current node has lower priority. The output signal is a double value from 0 to 253.
This port is disabled by default.

Output address claim status — Enable or disable the address claim AC Status display
off (default) | on

 J1939 Node Configuration

13-81

Enable or disable the address claim AC Status output port to show the success of an address claim.
The output value is binary, 1 for success or 0 for failure. This port is disabled by default.

See Also
J1939 CAN Transport Layer | J1939 Receive | J1939 Transmit | J1939 Network Configuration

Introduced in R2015b

13 Blocks

13-82

J1939 Receive
Receive J1939 parameter group messages
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Receive block receives a J1939 message from the configured CAN device. The J1939
database file defines the nodes and parameter groups. You specify the J1939 database by using the
J1939 Network Configuration block.

To use this block, you must have a license for both Vehicle Network Toolbox and Simulink software.

The J1939 communication blocks support the use of Simulink accelerator and rapid accelerator
modes. You can speed up the execution of Simulink models by using these modes. For more
information on these modes, see “Design Your Model for Effective Acceleration” (Simulink).

The J1939 communication blocks also support code generation that have limited deployment
capabilities. Code generation requires a C++ compiler that is compatible with the code generation
target. For the current list of supported compilers, see Supported and Compatible Compilers.

Ports
Output

Data — Data output
double

Depending on the J1939 parameter group defined in the J1939 database file, the block can have
multiple data output signal ports. The block output data type is double.

Msg Status — Message received status
0 | 1

When you select the Output New Message Received status check box in the parameters dialog,
this port outputs 1 when a new message is received from the CAN bus. Otherwise, this port outputs
0.

Parameters
Config name — Name of the J1939 network configuration to associate
ConfigX (default) | character vector

The name of the J1939 network configuration to associate. This value is used to access the
corresponding J1939 database. Only the nodes defined in the model and associated with the specified

 J1939 Receive

13-83

https://www.mathworks.com/support/requirements/supported-compilers.html

J1939 network configuration appear in the Node name list. The option shows none if no J1939
network configuration is found.

Node name — Name of the J1939 node
NodeX (default) | character vector

The name of the J1939 node. The drop-down list includes all the nodes in the model, both custom
nodes and nodes from the database.

Parameter Group — Parameter group number (PGN) and name from database
character vector

The parameter group number (PGN) and name from the database. The contents of this list vary
depending on the parameter groups that the J1939 database file specifies. The default is the first
parameter group for the selected node.

If you change any parameter group settings within your J1939 database file, open the J1939 Receive
block dialog box and select the same Parameter Group and click OK or Apply.

Signals — Signals defined in the parameter group
array of character vectors

Signals that are defined in the parameter group. The Min and Max settings are read from the
database, but by default the block does not clip signal values that exceed this range.

Source Address Filter — Filter messages based on source address
Allow all (default) | Allow only

Filter messages based on source address are:

• Allow only — Specify a single source address.
• Allow all — Accepts messages from any source address. This option is the default.

Destination Address Filter — Filter out message based on destination address
global and node specific (default) | global only | node specific only

Filter out a message based on the destination address:

• global only — Receive only broadcast messages.
• node specific only — Receive only messages addressed to this node.
• global and node specific — Receive all broadcast and node-addressed messages. This

option is the default.

Sample time — Simulation refresh rate
0.01 (default) | double

The simulation refresh rate. Specify the sampling time of the block during simulation. This value
defines the frequency at which the J1939 Receive block updates its output ports. If the block is inside
a triggered subsystem or inherits a sample time, specify a value of -1. You can also specify a MATLAB
variable for sample time. The default value is 0.01 simulation seconds. For information about
simulation sample timing, see “Timing in Hardware Interface Models” on page 8-21.

Output New Message Received status — Create a Msg Status output
0 (default) | 1

13 Blocks

13-84

Select this check box to create a Msg Status output port. Its output signal indicates a new incoming
message, showing 1 for a new message received, or 0 when there is no new message.

See Also
J1939 CAN Transport Layer | J1939 Transmit | J1939 Network Configuration | J1939 Node
Configuration

Introduced in R2015b

 J1939 Receive

13-85

J1939 Transmit
Transmit J1939 message
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Transmit block transmits a J1939 message. The J1939 database file defines the nodes and
parameter groups. You specify the J1939 database by using the J1939 Network Configuration block.

To use this block, you must have a license for both Vehicle Network Toolbox and Simulink software.

The J1939 communication blocks support the use of Simulink accelerator and rapid accelerator
modes. You can speed up the execution of Simulink models by using these modes. For more
information on these modes, see “Design Your Model for Effective Acceleration” (Simulink).

The J1939 communication blocks also support code generation that have limited deployment
capabilities. Code generation requires a C++ compiler that is compatible with the code generation
target. For the current list of supported compilers, see Supported and Compatible Compilers.

Ports
Input

Data — Input data
signal

Depending on the J1939 parameter group and signals defined in the J1939 database file, the block
can have multiple data input ports.

Trigger — Enables the transmission of message
0 | 1

Enables the transmission of the message for that sample. A value of 1 specifies to send, a value of 0
specifies not to send.

Parameters
Config name — Name of the J1939 network configuration to associate
ConfigX (default) | character vector

The name of the J1939 network configuration to associate with. This is used to access the
corresponding J1939 database. Only the nodes defined in the model and associated with the specified
J1939 network configuration appear in the Node name list. The option shows none if no J1939
network configuration is found.

13 Blocks

13-86

https://www.mathworks.com/support/requirements/supported-compilers.html

Node name — Name of the J1939 node
NodeX (default) | character vector

The name of the J1939 node. The drop-down list includes all the nodes in the model, both custom
nodes and nodes from the database.

Parameter Group — Group number (PGN) and name
int8

The parameter group number (PGN) and name from the database. The contents of this list vary
depending on the parameter groups that the J1939 database file specifies. The default is the first
parameter group for the selected node.

If you change any parameter group settings within your J1939 database file, you must then open the
J1939 Transmit block dialog box and select the same Parameter Group, then click OK or Apply to
update the parameter group information in the block.

Signals — Signals defined in parameter group
array of character vectors

Signals defined in the parameter group. The Min and Max settings are read from the database, but
by default the block does not clip signal values that exceed this range.

PG Priority — Priority of the parameter group
int8

Priority of the parameter group, read from the database. This priority setting resolves clashes of
multiple parameter groups transmitting on the same bus at the same time. If a conflict occurs, the
priority group with lower priority (higher value) will refrain from transmitting. The value can range
from 0 (highest priority) to 7 (lowest).

Destination Address — Name of the destination node
int8

The name of the destination node. The default is the first node defined in the database, otherwise
Custom.

For a custom destination address, you can specify 0–253 for the address of the destination node. For
broadcasting to all nodes, use the Custom Destination Address setting with an address of 255.

See Also
J1939 CAN Transport Layer | J1939 Receive | J1939 Network Configuration | J1939 Node
Configuration

Introduced in R2015b

 J1939 Transmit

13-87

XCP CAN Configuration
Configure XCP server connection
Library: Vehicle Network Toolbox / XCP Communication / CAN

Simulink Real-Time / XCP / CAN

Description
The XCP CAN Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP server connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP CAN Configuration. Use
one XCP CAN Configuration to configure one server connection for data acquisition or stimulation. If
you add XCP CAN Data Acquisition and XCP CAN Data Stimulation blocks, your model checks to see
if there is a corresponding XCP CAN Configuration block. If there is no corresponding XCP CAN
Configuration block, the model prompts you to add one.

The XCP CAN communication blocks support Simulink accelerator mode and rapid accelerator mode.
You can speed up the execution of Simulink models by using these modes. For more information
about these simulation modes, see “Design Your Model for Effective Acceleration” (Simulink).

Parameters
Config name — Specify XCP CAN session name
'CAN_Config1' (default)

Specify a unique name for your XCP CAN session.

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP CAN session..

Enable seed/key security — Select that key required to establish connection
'off'

Select this option if your server requires a secure key to establish connection. Use the File (*DLL)
parameter to specify the DLL file that contains the seed/key definition.

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security (EnableSecurity), this field is enabled. Click Browse to
select the file that contains the seed and key security algorithm that unlocks an XCP server module.
This parameter is available in Windows Desktop Simulation for Vehicle Network Toolbox.

The File (*.DLL) parameter specifies the name of the DLL-file that contains the seed and key security
algorithm used to unlock an XCP server module. The file defines the algorithm for generating the

13 Blocks

13-88

access key from a given seed according to ASAM standard definitions. For information on the file
format and API, see the Vector web page Steps to Use Seed&Key Option in CANape or "Seed and Key
Algorithm" in National Instruments CAN ECU Measurement and Calibration Toolkit User Manual.
Note: The DLL must be the same bitness as MATLAB (64-bit).

Output connection status — Display connection status
'off'

Select this option to display the status of the connection to the server module. Selecting this option
adds a new output port.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN Transport Layer

Introduced in R2013a

 XCP CAN Configuration

13-89

https://support.vector.com/kb?id=kb_article_view&sysparm_article=KB0011313
https://www.ni.com/pdf/manuals/371601m.pdf
https://www.mathworks.com/support/requirements/supported-compilers.html

XCP CAN Data Acquisition
Acquire selected measurements from configured server connection
Library: Vehicle Network Toolbox / XCP Communication / CAN

Simulink Real-Time / XCP / CAN

Description
The XCP CAN Data Acquisition block acquires data from the configured server connection based on
measurements that you select. The block uses the XCP CAN transport layer to obtain raw data for the
selected measurements at the specified simulation time step. Configure your XCP connection and use
the XCP CAN Data Acquisition block to select your event and measurements for the configured server
connection. The block displays the selected measurements as output ports.

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. You can speed up the execution of Simulink models by using these modes. For more
information on these simulation modes, see “Design Your Model for Effective Acceleration”
(Simulink).

Parameters
Config name — Specify XCP CAN session name
select from list

Select the name of the XCP configuration that you want to use. This list displays all available names
specified in the XCP CAN Configuration blocks in the model. Selecting a configuration displays events
and measurements available in the A2L file of this configuration.

Note You can acquire measurements for only one event by using an XCP CAN Data Acquisition block.
Use one block for each event whose measurements you want to acquire.

Event name — Select an event
select from list

Select an event from the available list of events. The XCP CAN Configuration block uses the specified
A2L file to populate the events list.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to add it to the selected measurements. On your keyboard,
press the Ctrl key to select multiple measurements.

13 Blocks

13-90

In the Block Parameters dialog box, type the name of the measurement you want to use in the Search
box. The All Measurements list displays a list of all matching names. Click the x to clear your
search.

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected measurements.

Block Output Settings — Set the port output as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Output Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the raw-to-physical
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG

 XCP CAN Data Acquisition

13-91

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• SLONG
• A_UINT64
• A_INT64
• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

DAQ List Priority — Specify a priority value for server device driver
priority value

Specify a priority value as an integer from 0 to 255 for the server device driver to prioritize
transmission of data packets. The server can accumulate XCP packets for lower priority DAQ lists
before transmission to the client. A value of 255 has the highest priority. The SET_DAQ_LIST_MODE
command communicates the DAQ List Priority value from client to server. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Sample time — Specify sampling time of block
0.01 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP CAN Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify –1 as your sample
time. You can also specify a MATLAB variable for sample time. The default value is 0.01 simulation
seconds. For more information, see “Timing in Hardware Interface Models” on page 8-21.

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and
outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

13 Blocks

13-92

https://www.mathworks.com/support/requirements/supported-compilers.html

See Also
Blocks
XCP CAN Configuration | XCP CAN Data Stimulation | XCP CAN Transport Layer

Introduced in R2013a

 XCP CAN Data Acquisition

13-93

XCP CAN Data Stimulation
Perform data stimulation on selected measurements
Library: Vehicle Network Toolbox / XCP Communication / CAN

Simulink Real-Time / XCP / CAN

Description
The XCP CAN Data Stimulation block sends data to the selected server connection for the selected
event measurements. The block uses the XCP CAN transport layer to output raw data for the selected
measurements at the specified stimulation time step. Configure your XCP session and use the XCP
CAN Data Stimulation block to select your event and measurements on the configured server
connection. The block displays the selected measurements as input ports.

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode. You
can speed up the execution of Simulink models by using these modes. For more information about
these simulation modes, see “Design Your Model for Effective Acceleration” (Simulink).

Parameters
Config name — Specify XCP CAN session name
select from list

Select the name of XCP configuration that you want to use. This list displays all available names
specified in the available XCP CAN Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration. You can stimulate
measurements for only one event by using an XCP CAN Data Stimulation block. Use one block for
each event whose measurements you want to stimulate.

Event name — Select an event
select from list

Select an event from the event list. The XCP CAN Configuration block uses the specified A2L file to
populate the events list. The block is configured with the corresponding event number from the A2L.

The event time cycle does not control transmission of stimulation packets. The block stimulates each
time it executes. For use in Simulink simulation, consider enabling simulation pacing to avoid free-
running stimulation.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

13 Blocks

13-94

In the block parameters dialog box, type the name of the measurement you want to use in the Search
box. The All Measurements lists displays a list of all matching names. Click the x to clear your
search.

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.

Block Input Settings — Set the port input as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Input Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the physical-to-raw
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG

 XCP CAN Data Stimulation

13-95

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• SLONG
• A_UINT64
• A_INT64
• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Transport Layer

Introduced in R2013a

13 Blocks

13-96

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP CAN Transport Layer
Transport XCP messages via CAN
Library: Vehicle Network Toolbox / XCP Communication / CAN

Simulink Real-Time / XCP / CAN

Description
The XCP CAN Transport Layer subsystem uses the specified device to transport and receive XCP
messages.

Use this block with an XCP CAN Data Acquisition block to acquire and analyze specific XCP
messages. Use this block with an XCP CAN Data Stimulation block to send specific information to
modules.

Other Supported Features

The XCP communication blocks support the use of Simulink Accelerator and Rapid Accelerator mode.
Using this feature, you can speed up the execution of Simulink models. For more information on this
feature, see the Simulink documentation.

Parameters
Device — CAN device
device list option

The CAN device, chosen from all connected CAN devices.

Bus speed — Speed of CAN bus
numeric

Speed of the CAN bus in bits per second. The default bus speed is the default assigned by the
selected device.

Sample time — Simulation refresh rate
0.01 (default) | numeric

Simulation refresh rate, specified as the sampling time of the block during simulation. This value
defines the frequency at which the XCP CAN Transport Layer subsystem and the underlying blocks
run during simulation. For information about simulation sample timing, see “Timing in Hardware
Interface Models” on page 8-21. If the block is inside a triggered subsystem or inherits a sample time,
specify a value of -1. You can also specify a MATLAB variable for sample time. The default value is
0.01 simulation seconds.

 XCP CAN Transport Layer

13-97

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation

Introduced in R2013a

13 Blocks

13-98

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP UDP Bypass
Connect the function-call outport to a function-call subsystem
Library: Vehicle Network Toolbox / XCP Communication / UDP

Simulink Real-Time / XCP / UDP

Description
The XCP UDP Bypass block connects the function-call outport to a function-call subsystem containing
one data acquisition list. The block issues a function-call when the downstream data acquisition list
has new data available.

Consider the downstream function-call subsystem as a bypass task:

In Simulink Real-Time, the bypass task is executed asynchronously with the assigned task priority.

In Simulink, the block checks for data acquisition data periodically at the assigned sample rate and
executes the bypass task accordingly.

Ports
Output

Function-call — Function call for bypass
function call

Connects the function-call outport to a function-call subsystem containing one data acquistion list.

Parameters
Task Priority — Task priority in QNX Neutrino scheduler
191 (default) | integer

Select the task priority for the QNX Neutrino scheduler.

Sample Time — Sample time
-1 (default) | double

Select the sample time. For more information, see “Sample Times in Subsystems” (Simulink).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

 XCP UDP Bypass

13-99

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Data Stimulation

Introduced in R2020b

13 Blocks

13-100

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP UDP Configuration
Configure XCP UDP server connection
Library: Vehicle Network Toolbox / XCP Communication / UDP

Simulink Real-Time / XCP / UDP

Description
The XCP UDP Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP server connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP UDP Configuration. Use
one XCP UDP Configuration to configure one server connection for data acquisition or stimulation. If
you add XCP UDP Data Acquisition and XCP UDP Data Stimulation blocks, your model checks to see
if there is a corresponding XCP UDP Configuration block. If there is no corresponding XCP UDP
Configuration block, the model prompts you to add one.

The XCP UDP communication blocks support Simulink accelerator mode and rapid accelerator mode.
You can speed up the execution of Simulink models by using these modes. For more information
about these simulation modes, see “Design Your Model for Effective Acceleration” (Simulink).

Parameters
Config name — Specify XCP UDP session name
'UDP_Config1' (default)

Specify a unique name for your XCP session.

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP session.

Enable seed/key security — Select that key required to establish connection
'off'

Select this option if your server requires a secure key to establish connection. Select a file that
contains the seed/key definition to enable security.

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security, this field is enabled. Click Browse to select the file that
contains the seed and key security algorithm that unlocks an XCP server module. This parameter is
available in Windows Desktop Simulation for Vehicle Network Toolbox.

 XCP UDP Configuration

13-101

Output connection status — Display connection status
'off'

Select this option to display the status of the connection to the server module. Selecting this option
adds a new output port.

Disable CTR error detection — Disable CTR error detection scheme
'on' (default) | 'off'

To detect missing packets, the block can check the counter value in each XCP packet header. When
'on', counter error detection for packet headers is disabled. When 'off', the counter Error
detection scheme is enabled.

Error detection scheme — Select CTR error detection scheme
One counter for all CTOs and DTOs (default) | Separate counters for
(RES,ERR,EV,SERV) and (DAQ) | Separate counters for (RES,ERR), (EV,SERV) and
(DAQ)

To detect missing packets, the block can check the counter value in each XCP packet header and
apply an error-detection scheme.

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited. For information about simulation sample timing, see “Timing in Hardware Interface
Models” on page 8-21.

Local IP Address — Maser IP address
x.x.x.x

Enter the IP address to which you want to connect.

Local Port — Client IP port
1–65535

The combination of Local IP address and Local port must be unique.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP UDP Data Acquisition | XCP UDP Data Stimulation | XCP UDP Bypass

13 Blocks

13-102

https://www.mathworks.com/support/requirements/supported-compilers.html

Introduced in R2019a

 XCP UDP Configuration

13-103

XCP UDP Data Acquisition
Acquire selected measurements from configured server connection
Library: Vehicle Network Toolbox / XCP Communication / UDP

Simulink Real-Time / XCP / UDP

Description
The XCP UDP Data Acquisition block acquires data from the configured server connection based on
the measurements that you select. The block uses the XCP UDP transport layer to obtain raw data for
the selected measurements at the specified simulation time step. Configure your XCP connection and
use the XCP UDP Data Acquisition block to select your event and measurements for the configured
server connection. The block displays the selected measurements as output ports.

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. You can speed up the execution of Simulink models by using these modes. For more
information on these simulation modes, see “Design Your Model for Effective Acceleration”
(Simulink).

Parameters
Config name — Specify XCP UDP session name
select from list

Select the name of XCP configuration that you want to use. This list displays all available names
specified in the XCP UDP Configuration blocks in the model. Selecting a configuration displays events
and measurements available in the A2L file of this configuration. You can acquire measurements for
only one event by using an XCP UDP Data Acquisition block. Use one block for each event whose
measurements you want to acquire.

Event name — Select an event
select from list

Select an event from the available list of events. The XCP UDP Configuration block uses the specified
A2L file to populate the events list.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to add it to the selected measurements. Hold the Ctrl key
on your keyboard to select multiple measurements.

In the Block Parameters dialog box, type the name of the measurement you want to use in the
Search box. The All Measurements lists displays a list of all matching names. Click the x to clear
your search.

13 Blocks

13-104

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.

Block Output Settings — Set the port output as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Output Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the raw-to-physical
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG
• SLONG
• A_UINT64
• A_INT64

 XCP UDP Data Acquisition

13-105

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

DAQ List Priority — Specify a priority value for server device driver
priority value

Specify a priority value as an integer from 0 to 255 for the server device driver to prioritize
transmission of data packets. The server can accumulate XCP packets for lower priority DAQ lists
before transmission to the client. A value of 255 has the highest priority. The SET_DAQ_LIST_MODE
command communicates the DAQ List Priority value from client to server. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Sample time — Specify sampling time of block
0.01 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP UDP Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify –1 as your sample
time. You can also specify a MATLAB variable for sample time. The default value is 0.01 simulation
seconds. For information about simulation sample timing, see “Timing in Hardware Interface Models”
on page 8-21.

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and
outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP UDP Configuration | XCP UDP Data Stimulation | XCP UDP Bypass

13 Blocks

13-106

https://www.mathworks.com/support/requirements/supported-compilers.html

Introduced in R2019a

 XCP UDP Data Acquisition

13-107

XCP UDP Data Stimulation
Perform data stimulation on selected measurements
Library: Vehicle Network Toolbox / XCP Communication / UDP

Simulink Real-Time / XCP / UDP

Description
The XCP UDP Data Stimulation block sends data to the selected server connection for the event
measurements that you select. The block uses the XCP UDP transport layer to output raw data for the
selected measurements at the specified stimulation time step. Configure your XCP session and use
the XCP UDP Data Stimulation block to select your event and measurements on the configured server
connection. The block displays the selected measurements as input ports.

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode. You
can speed up the execution of Simulink models by using these modes. For more information about
these simulation modes, see “Design Your Model for Effective Acceleration” (Simulink).

Parameters
Config name — Specify XCP UDP session name
select from list

Select the name of XCP configuration that you want to use. This list displays all available names
specified in the available XCP UDP Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration. You can stimulate
measurements for only one event by using an XCP UDP Data Stimulation block. Use one block for
each event whose measurements you want to stimulate.

Event name — Select an event
select from list

Select an event from the event list. The XCP UDP Configuration block uses the specified A2L file to
populate the events list. The block is configured with the corresponding event number from the A2L.

The event time cycle does not control transmission of stimulation packets. The block stimulates each
time it executes. For use in Simulink simulation, consider enabling simulation pacing to avoid free-
running stimulation.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

13 Blocks

13-108

In the block parameters dialog box, type the name of the measurement you want to use. The All
Measurements lists displays a list of all matching names. Click the x to clear your search.

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.

Block Input Settings — Set the port input as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Input Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the physical-to-raw
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG

 XCP UDP Data Stimulation

13-109

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• SLONG
• A_UINT64
• A_INT64
• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Bypass

Introduced in R2019a

13 Blocks

13-110

https://www.mathworks.com/support/requirements/supported-compilers.html

Vehicle Network Toolbox Examples

• “Get Started with CAN Communication in MATLAB” on page 14-3
• “Get Started with CAN FD Communication in MATLAB” on page 14-7
• “Use Message Reception Callback Functions in CAN Communication” on page 14-11
• “Use Message Filters in CAN Communication” on page 14-14
• “Use DBC-Files in CAN Communication” on page 14-21
• “Periodic CAN Communication in MATLAB” on page 14-29
• “Event-Based CAN Communication in MATLAB” on page 14-35
• “Use Relative and Absolute Timestamps in CAN Communication” on page 14-38
• “Get Started with J1939 Parameter Groups in MATLAB” on page 14-45
• “Get Started with J1939 Communication in MATLAB” on page 14-50
• “Periodic CAN Message Transmission Behavior in Simulink” on page 14-56
• “Event-Based CAN Message Transmission Behavior in Simulink” on page 14-59
• “Set up Communication Between Host and Target Models” on page 14-70
• “Log and Replay CAN Messages” on page 14-73
• “Get Started with J1939 Communication in Simulink” on page 14-77
• “Get Started with MDF-Files” on page 14-79
• “Read Data from MDF-Files” on page 14-83
• “Get Started with MDF Datastore” on page 14-88
• “CAN Connectivity in a Robotics Application” on page 14-95
• “CAN Connectivity in an Automotive Application” on page 14-99
• “Get Started with CAN FD Communication in Simulink” on page 14-102
• “Forward Collision Warning Application with CAN FD and TCP/IP” on page 14-105
• “Data Analytics Application with Many MDF-Files” on page 14-110
• “Log and Replay CAN FD Messages” on page 14-116
• “Map Channels from MDF-Files to Simulink Model Input Ports” on page 14-120
• “Get Started with CDFX-Files” on page 14-126
• “Use CDFX-Files with Simulink” on page 14-131
• “Use CDFX-Files with Simulink Data Dictionary” on page 14-135
• “Develop an App Designer App for a Simulink Model Using CAN” on page 14-139
• “Programmatically Build Simulink Models for CAN Communication” on page 14-162
• “Class-Based Unit Testing of Automotive Algorithms via CAN ” on page 14-169
• “Decode CAN Data from BLF-Files” on page 14-174
• “Decode CAN Data from MDF-Files” on page 14-178
• “Read Data from MDF-Files with Applied Conversion Rules” on page 14-184
• “Receive and Visualize CAN Data Using CAN Explorer” on page 14-192

14

• “Receive and Visualize CAN FD Data Using CAN FD Explorer” on page 14-198
• “Decode J1939 Data from BLF-Files” on page 14-204
• “Decode J1939 Data from MDF-Files” on page 14-209
• “Replay J1939 Logged Field Data to a Simulation ” on page 14-215
• “Calibrate XCP Characteristics” on page 14-219
• “Get Started with A2L-Files” on page 14-231
• “Analyze Data Using MDF Datastore and Tall Arrays” on page 14-236
• “Read XCP Measurements with Dynamic DAQ Lists” on page 14-247
• “Get Started with CAN Communication in Simulink” on page 14-253
• “Work with Unfinalized and Unsorted MDF-Files” on page 14-256
• “CAN Message Reception Behavior in Simulink” on page 14-260
• “Read XCP Measurements with Direct Acquisition” on page 14-265

14 Vehicle Network Toolbox Examples

14-2

Get Started with CAN Communication in MATLAB
This example shows you how to use CAN channels to transmit and receive CAN messages. It uses
MathWorks virtual CAN channels connected in a loopback configuration.

Create a Receiving Channel

Create a CAN channel using canChannel to receive messages by specifying the vendor name, device
name, and device channel index.

rxCh = canChannel("MathWorks", "Virtual 1", 2);

Inspect the Channel

Use the get command to obtain more detailed information on all channel properties and their current
values.

get(rxCh)

 ArbitrationBusSpeed: []
 DataBusSpeed: []
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 SilentMode: 0
 TransceiverState: 'N/A'
 BusSpeed: 500000
 NumOfSamples: []
 SJW: []
 TSEG1: []
 TSEG2: []
 BusStatus: 'N/A'
 TransceiverName: 'N/A'
 Database: []
 MessageReceivedFcn: []
 MessageReceivedFcnCount: 1
 UserData: []
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'
 MessagesReceived: 0
 MessagesTransmitted: 0
 Running: 0
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 DeviceVendor: 'MathWorks'
 ProtocolMode: 'CAN'
 MessagesAvailable: 0

Start the Channel

Use the start command to set the channel online.

start(rxCh);

 Get Started with CAN Communication in MATLAB

14-3

https://www.mathworks.com/help/vnt/ug/canchannel.html
https://www.mathworks.com/help/vnt/ug/start.html

Transmit Messages

The example function generateMsgs creates CAN messages using canMessage and transmits them
using transmit at various periodic rates. It generates traffic on the CAN bus for demonstration
purposes.

type generateMsgs

function generateMsgs()
% generateMsgs Creates and transmits CAN messages for demo purposes.
%
% generateMsgs periodically transmits multiple CAN messages at various
% periodic rates with changing message data.
%

% Copyright 2008-2016 The MathWorks, Inc.

 % Create the messages to send using the canMessage function. The
 % identifier, an indication of standard or extended type, and the data
 % length is given for each message.
 msgTx100 = canMessage(100, false, 0);
 msgTx200 = canMessage(200, false, 2);
 msgTx400 = canMessage(400, false, 4);
 msgTx600 = canMessage(600, false, 6);
 msgTx800 = canMessage(800, false, 8);

 % Create a CAN channel on which to transmit.
 txCh = canChannel('MathWorks', 'Virtual 1', 1);

 % Register each message on the channel at a specified periodic rate.
 transmitPeriodic(txCh, msgTx100, 'On', 0.500);
 transmitPeriodic(txCh, msgTx200, 'On', 0.250);
 transmitPeriodic(txCh, msgTx400, 'On', 0.125);
 transmitPeriodic(txCh, msgTx600, 'On', 0.050);
 transmitPeriodic(txCh, msgTx800, 'On', 0.025);

 % Start the CAN channel.
 start(txCh);

 % Run for several seconds incrementing the message data regularly.
 for ii = 1:50
 % Increment the message data bytes.
 msgTx200.Data = msgTx200.Data + 1;
 msgTx400.Data = msgTx400.Data + 1;
 msgTx600.Data = msgTx600.Data + 1;
 msgTx800.Data = msgTx800.Data + 1;

 % Wait for a time period.
 pause(0.100);
 end

 % Stop the CAN channel.
 stop(txCh);
end

Run the generateMsgs function to transmit messages for the example.

generateMsgs();

14 Vehicle Network Toolbox Examples

14-4

https://www.mathworks.com/help/vnt/ug/canmessage.html
https://www.mathworks.com/help/vnt/ug/transmit.html

Receive Messages

Once generateMsgs completes, receive all available messages from the channel using the receive
function.

rxMsg = receive(rxCh, Inf, "OutputFormat", "timetable");

Use head to extract the first few rows of received messages for preview.

head(rxMsg)

ans=8×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ___________ ___ ________ __________ ___________________ ______ ____________ _____ ______

 0.21832 sec 100 false {0x0 char} {1x0 uint8 } 0 {0x0 struct} false false
 0.21832 sec 200 false {0x0 char} {[0 0]} 2 {0x0 struct} false false
 0.21833 sec 400 false {0x0 char} {[0 0 0 0]} 4 {0x0 struct} false false
 0.21834 sec 600 false {0x0 char} {[0 0 0 0 0 0]} 6 {0x0 struct} false false
 0.21834 sec 800 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.2484 sec 800 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.27821 sec 600 false {0x0 char} {[1 1 1 1 1 1]} 6 {0x0 struct} false false
 0.27822 sec 800 false {0x0 char} {[1 1 1 1 1 1 1 1]} 8 {0x0 struct} false false

Stop the Channel

Use the stop command to set the channel offline.

stop(rxCh);

Analyze Received Messages

MATLAB provides a powerful environment for performing analysis on CAN messages. The plot
command can create a scatter plot with message timestamps and identifiers to provide an overview of
when certain messages occurred on the network.

plot(rxMsg.Time, rxMsg.ID, "x")
ylim([0 2047])
xlabel("Timestamp")
ylabel("CAN Identifier")

 Get Started with CAN Communication in MATLAB

14-5

https://www.mathworks.com/help/vnt/ug/receive.html
https://www.mathworks.com/help/matlab/ref/table.head.html
https://www.mathworks.com/help/vnt/ug/stop.html
https://www.mathworks.com/help/matlab/ref/plot.html

14 Vehicle Network Toolbox Examples

14-6

Get Started with CAN FD Communication in MATLAB
This example shows you how to use CAN FD channels to transmit and receive CAN FD messages. It
uses MathWorks virtual CAN FD channels connected in a loopback configuration.

View Available CAN FD Channels

Use canFDChannelList to see all available device channels supporting CAN FD.

canFDChannelList

ans=2×6 table
 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 ___________ ___________ _______ ___________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"

Create Transmitting and Receiving Channels

Use canFDChannel with device details specified to create CAN FD channels for transmitting and
receiving messages.

txCh = canFDChannel("MathWorks", "Virtual 1", 1)

txCh =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN FD'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Bit Timing Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 ArbitrationBusSpeed: []
 DataBusSpeed: []

 Other Information
 Database: []

 Get Started with CAN FD Communication in MATLAB

14-7

https://www.mathworks.com/help/vnt/ug/canfdchannellist.html
https://www.mathworks.com/help/vnt/ug/canfdchannel.html

 UserData: []

rxCh = canFDChannel("MathWorks", "Virtual 1", 2);

Configure Bus Speed

CAN FD channels require setting of bus speed before going online. Both the arbitration and data
phase speeds are configured using configBusSpeed.

configBusSpeed(txCh, 500000, 1000000);
configBusSpeed(rxCh, 500000, 1000000);

Open the DBC-File

Use canDatabase to open the database file that contains definitions of CAN FD messages and
signals.

db = canDatabase("CANFDExample.dbc")

db =
 Database with properties:

 Name: 'CANFDExample'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex36915890\CANFDExample.dbc'
 Nodes: {}
 NodeInfo: [0x0 struct]
 Messages: {'CANFDMessage'}
 MessageInfo: [1x1 struct]
 Attributes: {2x1 cell}
 AttributeInfo: [2x1 struct]
 UserData: []

Attach the database directly to the receiving channel. Definitions from the DBC-files are applied
automatically to decode incoming messages and signals.

rxCh.Database = db;

Start the Channels

Use the start command to set the channels online.

start(txCh);
start(rxCh);

Create CAN FD Messages

Create CAN FD messages using the canFDMessage function.

msg1 = canFDMessage(500, false, 12)

msg1 =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN FD'
 ID: 500
 Extended: 0

14 Vehicle Network Toolbox Examples

14-8

https://www.mathworks.com/help/vnt/ug/configbusspeed.html
https://www.mathworks.com/help/vnt/ug/candatabase.html
https://www.mathworks.com/help/vnt/ug/start.html
https://www.mathworks.com/help/vnt/ug/canfdmessage.html

 Name: ''

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0 0 0 0 0]
 Signals: []
 Length: 12
 DLC: 9

 Protocol Flags
 BRS: 0
 ESI: 0
 Error: 0

 Other Information
 Database: []
 UserData: []

msg2 = canFDMessage(1000, false, 24);
msg3 = canFDMessage(1500, false, 64);

To engage the bit rate switch capability of CAN FD, set the BRS property of the messages.

msg1.BRS = true;
msg2.BRS = true;
msg3.BRS = true;

CAN FD messages can also be created using a database. The database defines if a message is CAN or
CAN FD as well as the BRS status.

msg4 = canFDMessage(db, "CANFDMessage")

msg4 =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN FD'
 ID: 1
 Extended: 0
 Name: 'CANFDMessage'

 Data Details
 Timestamp: 0
 Data: [0 ...]
 Signals: []
 Length: 48
 DLC: 14

 Protocol Flags
 BRS: 1
 ESI: 0
 Error: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

 Get Started with CAN FD Communication in MATLAB

14-9

Transmit Messages

Use transmit to send the created messages from the transmitting channel.

transmit(txCh, [msg1 msg2 msg3 msg4])

Receive Messages

Receive the messages from the receiving channel using the receive function. The default return
type for CAN FD channels is a timetable containing information specific to the received CAN FD
messages.

rxMsg = receive(rxCh, Inf)

rxMsg=4×12 timetable
 Time ID Extended Name ProtocolMode Data Length DLC Signals Error Remote BRS ESI
 ___________ ____ ________ ________________ ____________ __ ______ ___ ____________ _____ ______ _____ _____

 0.1969 sec 500 false {0x0 char } {'CAN FD'} {[0 0 0 0 0 0 0 0 0 0 0 0]} 12 9 {0x0 struct} false false true false
 0.19691 sec 1000 false {0x0 char } {'CAN FD'} {[0]} 24 12 {0x0 struct} false false true false
 0.19691 sec 1500 false {0x0 char } {'CAN FD'} {[0 ...]} 64 15 {0x0 struct} false false true false
 0.19691 sec 1 false {'CANFDMessage'} {'CAN FD'} {[0 ...]} 48 14 {1x1 struct} false false true false

Stop the Channels

Use the stop command to set the channels offline.

stop(txCh);
stop(rxCh);

Close the DBC-File

Close access to the DBC-file by clearing its variable from the workspace.

clear db

14 Vehicle Network Toolbox Examples

14-10

https://www.mathworks.com/help/vnt/ug/transmit.html
https://www.mathworks.com/help/vnt/ug/receive.html
https://www.mathworks.com/help/vnt/ug/stop.html

Use Message Reception Callback Functions in CAN
Communication

This example shows you how to use a callback function to process messages received from a CAN
channel. It uses MathWorks virtual CAN channels connected in a loopback configuration. This
example describes the workflow for a CAN network, but the concept demonstrated also applies to a
CAN FD network.

Create a Receiving Channel

Create a CAN channel using canChannel to receive messages by specifying the vendor name, device
name, and device channel index.

rxCh = canChannel("MathWorks", "Virtual 1", 2)

rxCh =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

Configure the Callback Function

Set the callback function to run when a required number of messages are available on the channel.

rxCh.MessageReceivedFcn = @receivingFcn;

 Use Message Reception Callback Functions in CAN Communication

14-11

https://www.mathworks.com/help/vnt/ug/canchannel.html

Configure the Message Received Count

Specify the number of messages required in the channel before the callback function is triggered.

rxCh.MessageReceivedFcnCount = 30;

Implement the Callback Function

The example callback function receives all available messages from the channel and plots the CAN
identifiers against their timestamps on each execution.

type receivingFcn

function receivingFcn(rxCh)
% RECEIVINGFCN A CAN channel message receive callback function.
%
% This is a callback function used to receive CAN message. It receives
% messages from the channel RXCH and plots the result.
%

% Copyright 2009-2016 The MathWorks, Inc.

 % Receive all available messages.
 rxMsg = receive(rxCh, Inf, 'OutputFormat', 'timetable');

 % Plot the signal values against their message timestamps.
 plot(rxMsg.Time, rxMsg.ID, 'x');
 ylim([0 2047])
 xlabel('Timestamp');
 ylabel('CAN Identifier');
 hold all;
end

Start the Channel

Use the start command to set the channel online.

start(rxCh);

Execute the Callback Function

The function generateMsgs creates CAN messages and transmits them at various periodic rates to
create traffic on the CAN bus. As the messages are transmitted, the callback function executes each
time the threshold specified by property MessageReceivedFcnCount is met.

generateMsgs();

14 Vehicle Network Toolbox Examples

14-12

https://www.mathworks.com/help/vnt/ug/start.html

Inspect the Remaining Messages

Display the MessagesAvailable property of the channel to see the number of remaining messages.
Since the available message count is below the specified threshold, more messages are required to
trigger the callback another time.

rxCh.MessagesAvailable

ans = 31

Stop the Channel

Use the stop command to set the channel offline.

stop(rxCh);

 Use Message Reception Callback Functions in CAN Communication

14-13

https://www.mathworks.com/help/vnt/ug/stop.html

Use Message Filters in CAN Communication
This example shows you how to use CAN message filters to allow only messages that contain
specified identifiers to pass through a channel. It uses MathWorks virtual CAN channels connected in
a loopback configuration. This example describes the workflow for a CAN network, but the concept
demonstrated also applies to a CAN FD network.

Create Transmitting and Receiving Channels

Create one channel for transmitting messages and another channel for receiving. Filters are set later
on the receiving channel.

txCh = canChannel("MathWorks", "Virtual 1", 1)

txCh =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

rxCh = canChannel("MathWorks", "Virtual 1", 2)

rxCh =
 Channel with properties:

 Device Information

14 Vehicle Network Toolbox Examples

14-14

 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

Create Messages

Create a few messages to be sent to the receiving channel multiple times throughout the example.
Note that one message has an extended identifier.

txMsgs(1) = canMessage(250, false, 8);
txMsgs(2) = canMessage(500, false, 8);
txMsgs(3) = canMessage(1000, false, 8);
txMsgs(4) = canMessage(1500, true, 8);
txMsgs(5) = canMessage(2000, false, 8);

Receive Messages with No Filter

Set the channels online, transmit the messages on one channel, and receive on the other. Note that
all messages sent are received. By default, a newly created channel with no filter configured receives
all standard and extended identifiers.

start(rxCh);
start(txCh);
transmit(txCh, txMsgs);
pause(0.5);
rxMsgs1 = receive(rxCh, Inf, "OutputFormat", "timetable")

rxMsgs1=5×8 timetable
 Time ID Extended Name Data Length Signals Error Remote

 Use Message Filters in CAN Communication

14-15

 ____________ ____ ________ __________ ___________________ ______ ____________ _____ ______

 0.071294 sec 250 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.071296 sec 500 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.071298 sec 1000 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.071301 sec 1500 true {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.071303 sec 2000 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false

Stop both receiving and transmitting channels.

stop(rxCh);
stop(txCh);

Plot identifiers of the received messages to see that all messages sent are received by the channel.

plot(1, rxMsgs1.ID, "x")
h_gca = gca;
h_gca.XTick = 0:1:2;
h_gca.XTickLabel = ["", "Transmit 1", ""];
axis([0 2 0 2047])
xlabel("Message Transmits")
ylabel("CAN Identifiers")

14 Vehicle Network Toolbox Examples

14-16

Receive Messages with Filters Configured by Identifier

Use the filterAllowOnly command to allow only specified messages by CAN identifier and
identifier type. Configure the receiving channel to only receive messages with standard identifiers
500 and 2000.

filterAllowOnly(rxCh, [500 2000], "Standard");

Display the FilterHistory property of the channel to view the configured state of the message
filters.

rxCh.FilterHistory

ans =
'Standard ID Filter: Allow Only | Extended ID Filter: Allow All'

Transmit the messages again to the receiving channel. Note that fewer messages are received this
time.

start(rxCh);
start(txCh);
transmit(txCh, txMsgs);
pause(0.5);
rxMsgs2 = receive(rxCh, Inf, "OutputFormat", "timetable")

rxMsgs2=3×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ___________ ____ ________ __________ ___________________ ______ ____________ _____ ______

 0.10398 sec 500 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.10399 sec 1500 true {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.10399 sec 2000 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false

Stop both receiving and transmitting channels.

stop(rxCh);
stop(txCh);

Add the newly received data to the plot to see which messages passed the filters. The message with
extended identifier 1500 is not blocked by the filter because the filter was only configured for
standard identifiers.

plot(1, rxMsgs1.ID, "x", 2, rxMsgs2.ID, "x");
h_gca = gca;
h_gca.XTick = 0:1:3;
h_gca.XTickLabel = ["", "Transmit 1", "Transmit 2", ""];
axis([0 3 0 2047])
xlabel("Message Transmits")
ylabel("CAN Identifiers")

 Use Message Filters in CAN Communication

14-17

https://www.mathworks.com/help/vnt/ug/filterallowonly.html

Reset the Message Filters

Reset the message filters to the default states with the filterAllowAll command so that all
standard identifiers are allowed.

filterAllowAll(rxCh, "Standard");

Display the FilterHistory property of the channel to view the configured state of the message
filters.

rxCh.FilterHistory

ans =
'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

Transmit and receive for a third time to see that all messages are once again passing through the
filters and received by the receiving channel.

start(rxCh);
start(txCh);
transmit(txCh, txMsgs);
pause(0.5);
rxMsgs3 = receive(rxCh, Inf, "OutputFormat", "timetable")

rxMsgs3=5×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ____ ________ __________ ___________________ ______ ____________ _____ ______

14 Vehicle Network Toolbox Examples

14-18

https://www.mathworks.com/help/vnt/ug/filterallowall.html

 0.079855 sec 250 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.079856 sec 500 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.079857 sec 1000 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.079861 sec 1500 true {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false
 0.079862 sec 2000 false {0x0 char} {[0 0 0 0 0 0 0 0]} 8 {0x0 struct} false false

Stop both receiving and transmitting channels.

stop(rxCh);
stop(txCh);

With the new data added to the plot, observe that the first and third transmits are identical as the
message filters are fully open in both cases.

plot(1, rxMsgs1.ID, "x", 2, rxMsgs2.ID, "x", 3, rxMsgs3.ID, "x")
h_gca = gca;
h_gca.XTick = 0:1:4;
h_gca.XTickLabel = ["", "Transmit 1", "Transmit 2", "Transmit 3", ""];
axis([0 4 0 2047])
xlabel("Message Transmits")
ylabel("CAN Identifiers")

Receive Messages with Filters Configured by Name

The filterAllowOnly command can also filter messages by name when using a DBC-file. Allow
only messages with name EngineMsg.

 Use Message Filters in CAN Communication

14-19

db = canDatabase("demoVNT_CANdbFiles.dbc");
rxCh.Database = db;
filterAllowOnly(rxCh, "EngineMsg");
rxCh.FilterHistory

ans =
'Standard ID Filter: Allow Only | Extended ID Filter: Allow All'

Block All Messages of a Specific Identifier Type

The filterBlockAll command allows you to easily set the filters to block all messages of either
standard or extended identifier type. Block all messages with extended identifiers.

filterBlockAll(rxCh, "Extended");
rxCh.FilterHistory

ans =
'Standard ID Filter: Allow Only | Extended ID Filter: Block All'

Stop the Channels

Stop both receiving and transmitting channels and clear them from the workspace.

stop(rxCh);
stop(txCh);
clear rxCh txCh

Close the DBC-File

Close access to the DBC-file by clearing its variable from the workspace.

clear db

14 Vehicle Network Toolbox Examples

14-20

https://www.mathworks.com/help/vnt/ug/filterblockall.html

Use DBC-Files in CAN Communication
This example shows you how to create, receive and process messages using information stored in
DBC-files. This example describes the workflow for a CAN network, but the concept demonstrated
also applies to a CAN FD network.

Open the DBC-File

Open file demoVNT_CANdbFiles.dbc using canDatabase.

db = canDatabase("demoVNT_CANdbFiles.dbc")

db =
 Database with properties:

 Name: 'demoVNT_CANdbFiles'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex80654288\demoVNT_CANdbFiles.dbc'
 Nodes: {}
 NodeInfo: [0x0 struct]
 Messages: {5x1 cell}
 MessageInfo: [5x1 struct]
 Attributes: {}
 AttributeInfo: [0x0 struct]
 UserData: []

Examine the Messages property to see the names of all messages defined in this file.

db.Messages

ans = 5x1 cell
 {'DoorControlMsg' }
 {'EngineMsg' }
 {'SunroofControlMsg'}
 {'TransmissionMsg' }
 {'WindowControlMsg' }

View Message Information

Use messageInfo to view information for message EngineMsg, including the identifier, data length,
and a signal list.

messageInfo(db, "EngineMsg")

ans = struct with fields:
 Name: 'EngineMsg'
 ProtocolMode: 'CAN'
 Comment: ''
 ID: 100
 Extended: 0
 J1939: []
 Length: 8
 DLC: 8
 BRS: 0
 Signals: {2x1 cell}
 SignalInfo: [2x1 struct]
 TxNodes: {0x1 cell}

 Use DBC-Files in CAN Communication

14-21

https://www.mathworks.com/help/vnt/ug/candatabase.html
https://www.mathworks.com/help/vnt/ug/messageinfo.html

 Attributes: {}
 AttributeInfo: [0x0 struct]

You can also query for information on all messages at once.

messageInfo(db)

ans=5×1 struct array with fields:
 Name
 ProtocolMode
 Comment
 ID
 Extended
 J1939
 Length
 DLC
 BRS
 Signals
 SignalInfo
 TxNodes
 Attributes
 AttributeInfo

View Signal Information

Use signalInfo to view information for signal EngineRPM in message EngineMsg, including type,
byte ordering, size, and scaling values that translate raw signals to physical values.

signalInfo(db, "EngineMsg", "EngineRPM")

ans = struct with fields:
 Name: 'EngineRPM'
 Comment: ''
 StartBit: 0
 SignalSize: 32
 ByteOrder: 'LittleEndian'
 Signed: 0
 ValueType: 'Integer'
 Class: 'uint32'
 Factor: 0.1000
 Offset: 250
 Minimum: 250
 Maximum: 9500
 Units: 'rpm'
 ValueTable: [0x1 struct]
 Multiplexor: 0
 Multiplexed: 0
 MultiplexMode: 0
 RxNodes: {0x1 cell}
 Attributes: {}
 AttributeInfo: [0x0 struct]

You can also query for information on all signals in message EngineMsg at once.

signalInfo(db, "EngineMsg")

14 Vehicle Network Toolbox Examples

14-22

https://www.mathworks.com/help/vnt/ug/signalinfo.html

ans=2×1 struct array with fields:
 Name
 Comment
 StartBit
 SignalSize
 ByteOrder
 Signed
 ValueType
 Class
 Factor
 Offset
 Minimum
 Maximum
 Units
 ValueTable
 Multiplexor
 Multiplexed
 MultiplexMode
 RxNodes
 Attributes
 AttributeInfo
 ⋮

Create a Message Using Database Definitions

Create a new message by specifying the database and the message name EngineMsg to have the
database definition applied. CAN signals in this message are represented in engineering units in
addition to the raw data bytes.

msgEngineInfo = canMessage(db, "EngineMsg")

msgEngineInfo =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 100
 Extended: 0
 Name: 'EngineMsg'

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

 Use DBC-Files in CAN Communication

14-23

View Signal Information

Use the Signals property to see signal values for this message. You can directly write to and read
from these signals to pack and unpack data from the message.

msgEngineInfo.Signals

ans = struct with fields:
 VehicleSpeed: 0
 EngineRPM: 250

Change Signal Information

Write directly to the signal EngineRPM to change its value.

msgEngineInfo.Signals.EngineRPM = 5500.25

msgEngineInfo =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 100
 Extended: 0
 Name: 'EngineMsg'

 Data Details
 Timestamp: 0
 Data: [23 205 0 0 0 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

Read the current signal values back and note that EngineRPM has been updated with the written
value.

msgEngineInfo.Signals

ans = struct with fields:
 VehicleSpeed: 0
 EngineRPM: 5.5003e+03

When a value is written directly to the signal, it is translated, scaled, and packed into the message
data using the database definition. Note the value change in the Data property after a new value is
written to the VehicleSpeed signal.

msgEngineInfo.Signals.VehicleSpeed = 70.81

msgEngineInfo =
 Message with properties:

14 Vehicle Network Toolbox Examples

14-24

 Message Identification
 ProtocolMode: 'CAN'
 ID: 100
 Extended: 0
 Name: 'EngineMsg'

 Data Details
 Timestamp: 0
 Data: [23 205 0 0 71 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

msgEngineInfo.Signals

ans = struct with fields:
 VehicleSpeed: 71
 EngineRPM: 5.5003e+03

Receive Messages with Database Information

Attach a database to a CAN channel that receives messages to apply database definitions to incoming
messages automatically. The database decodes only messages that are defined. All other messages
are received in their raw form.

rxCh = canChannel("MathWorks", "Virtual 1", 2);
rxCh.Database = db

rxCh =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information

 Use DBC-Files in CAN Communication

14-25

 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: [1x1 can.Database]
 UserData: []

Receive Messages

Start the channel, generate some message traffic, and receive messages with physical message
decoding.

start(rxCh);
generateMsgsDb();
rxMsg = receive(rxCh, Inf, "OutputFormat", "timetable");

View the first few rows of received messages.

head(rxMsg)

ans=8×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ _____________________ ________________________ ______ ____________ _____ ______

 0.087502 sec 100 false {'EngineMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.087506 sec 200 false {'TransmissionMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.08751 sec 400 false {'DoorControlMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.087513 sec 600 false {'WindowControlMsg' } {[0 0 0 0]} 4 {1x1 struct} false false
 0.087516 sec 800 false {'SunroofControlMsg'} {[0 0]} 2 {1x1 struct} false false
 0.11855 sec 100 false {'EngineMsg' } {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false
 0.1485 sec 100 false {'EngineMsg' } {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false
 0.14852 sec 200 false {'TransmissionMsg' } {[4 0 0 0 0 0 0 0]} 8 {1x1 struct} false false

Stop the receiving channel and clear it from the workspace.

stop(rxCh);
clear rxCh

Examine a Received Message

Inspect a received message to see the applied database decoding.

rxMsg(10, :)

ans=1×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ___________ ___ ________ _____________ ________________________ ______ ____________ _____ ______

14 Vehicle Network Toolbox Examples

14-26

 0.20849 sec 100 false {'EngineMsg'} {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false

rxMsg.Signals{10}

ans = struct with fields:
 VehicleSpeed: 50
 EngineRPM: 3.5696e+03

Extract All Instances of a Specified Message

Extract all instances of message EngineMsg.

allMsgEngine = rxMsg(strcmpi("EngineMsg", rxMsg.Name), :);

View the first few instances of this specific message.

head(allMsgEngine)

ans=8×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ _____________ ________________________ ______ ____________ _____ ______

 0.087502 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.11855 sec 100 false {'EngineMsg'} {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false
 0.1485 sec 100 false {'EngineMsg'} {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false
 0.17844 sec 100 false {'EngineMsg'} {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false
 0.20849 sec 100 false {'EngineMsg'} {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false
 0.23845 sec 100 false {'EngineMsg'} {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false
 0.26846 sec 100 false {'EngineMsg'} {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false
 0.29837 sec 100 false {'EngineMsg'} {[172 129 0 0 50 0 0 0]} 8 {1x1 struct} false false

Plot Physical Signal Values

Use canSignalTimetable to repackage signal data from message EngineMsg into a signal
timetable.

signalTimetable = canSignalTimetable(rxMsg, "EngineMsg");

View the first few rows of the signal timetable.

head(signalTimetable)

ans=8×2 timetable
 Time VehicleSpeed EngineRPM
 ____________ ____________ _________

 0.087502 sec 0 250
 0.11855 sec 50 3569.6
 0.1485 sec 50 3569.6
 0.17844 sec 50 3569.6
 0.20849 sec 50 3569.6
 0.23845 sec 50 3569.6
 0.26846 sec 50 3569.6
 0.29837 sec 50 3569.6

Plot the values of signal VehicleSpeed over time.

 Use DBC-Files in CAN Communication

14-27

https://www.mathworks.com/help/vnt/ug/cansignaltimetable.html

plot(signalTimetable.Time, signalTimetable.VehicleSpeed)
title("Vehicle Speed from EngineMsg", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Vehicle Speed")

Close the DBC-File

Close access to the DBC-file by clearing its variable from the workspace.

clear db

14 Vehicle Network Toolbox Examples

14-28

Periodic CAN Communication in MATLAB
This example shows you how to how to configure CAN channels and messages for transmit messages
periodically. It uses MathWorks virtual CAN channels connected in a loopback configuration.

As this example is based on sending and receiving CAN messages on a virtual network, running CAN
Explorer in conjunction may provide a more complete understanding of what the code is doing. To
run CAN Explorer, open and configure it to use the same interface as the receiving channel of the
example. Make sure to start CAN Explorer before beginning to run the example in order to see all of
the messages as they occur.

This example describes the workflow for a CAN network, but the concept demonstrated also applies
to a CAN FD network.

Create the CAN Channels

Create CAN channels for message transmission and reception.

txCh = canChannel("MathWorks", "Virtual 1", 1);
rxCh = canChannel("MathWorks", "Virtual 1", 2);

Open the DBC-file that contains message and signal definitions, and attach it to both CAN channels.

db = canDatabase("CANDatabasePeriodic.dbc");
txCh.Database = db;
rxCh.Database = db;

Create the CAN Messages

Create CAN messages EngineMsg and TransmissionMsg using the database information.

msgFast = canMessage(db, "EngineMsg")

msgFast =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 100
 Extended: 0
 Name: 'EngineMsg'

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

msgSlow = canMessage(db, "TransmissionMsg")

 Periodic CAN Communication in MATLAB

14-29

msgSlow =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 200
 Extended: 0
 Name: 'TransmissionMsg'

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

Configure Messages for Periodic Transmission

To enable a message for periodic transmission, use the transmitPeriodic command specifying the
transmitting channel, the message to register on the channel, a state value, and the periodic rate.

transmitPeriodic(txCh, msgFast, "On", 0.100);
transmitPeriodic(txCh, msgSlow, "On", 0.500);

Start the Periodic Transmission

Start the receiving channel.

start(rxCh);

Start the transmitting channel with periodic transmission configured in the previous step. Period
transmission begins immediately. Allow the channels to run for two seconds.

start(txCh);
pause(2);

Update Transmitted Data

To update the live messages or signal data transmitted onto the CAN bus, write new values directly to
the VehicleSpeed signal in message EngineMsg.

msgFast.Signals.VehicleSpeed = 60;
pause(1);
msgFast.Signals.VehicleSpeed = 65;
pause(1);
msgFast.Signals.VehicleSpeed = 70;
pause(1);

Alternatively, you can write new values to the Data property of the created messages.

14 Vehicle Network Toolbox Examples

14-30

https://www.mathworks.com/help/vnt/ug/transmitperiodic.html

Receive the Messages

Stop the CAN channels and receive all periodically transmitted messages for analysis.

stop(txCh);
stop(rxCh);
msgRx = receive(rxCh, Inf, "OutputFormat", "timetable");

View the first few rows of the received messages using the head function.

head(msgRx)

ans=8×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ ___________________ ___________________ ______ ____________ _____ ______

 0.070266 sec 100 false {'EngineMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.070272 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.17624 sec 100 false {'EngineMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.28219 sec 100 false {'EngineMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.38811 sec 100 false {'EngineMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.49409 sec 100 false {'EngineMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.56905 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.59903 sec 100 false {'EngineMsg' } {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false

Analyze the Behavior of Periodic Transmission

Analyze the distribution of messages by plotting the identifiers of each received message against
their timestamps. Note the difference between how often the two messages appear according to the
configured periodic rates.

plot(msgRx.Time, msgRx.ID, "x")
ylim([0 400])
title("Message Distribution", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("CAN Identifier")

 Periodic CAN Communication in MATLAB

14-31

https://www.mathworks.com/help/matlab/ref/table.head.html

For further analysis, separate the two messages into individual timetables.

msgRxFast = msgRx(strcmpi("EngineMsg", msgRx.Name), :);
head(msgRxFast)

ans=8×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ _____________ ___________________ ______ ____________ _____ ______

 0.070266 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.17624 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.28219 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.38811 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.49409 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.59903 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.70499 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.80992 sec 100 false {'EngineMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false

msgRxSlow = msgRx(strcmpi("TransmissionMsg", msgRx.Name), :);
head(msgRxSlow)

ans=8×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ ___________________ ___________________ ______ ____________ _____ ______

 0.070272 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 0.56905 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false

14 Vehicle Network Toolbox Examples

14-32

 1.0668 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 1.5646 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 2.0763 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 2.5751 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 3.0739 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false
 3.5747 sec 200 false {'TransmissionMsg'} {[0 0 0 0 0 0 0 0]} 8 {1x1 struct} false false

Analyze the timestamps of each set of messages to see how closely the average of the differences
corresponds to the configured periodic rates.

avgPeriodFast = mean(diff(msgRxFast.Time))

avgPeriodFast = duration
 0.10549 sec

avgPeriodSlow = mean(diff(msgRxSlow.Time))

avgPeriodSlow = duration
 0.50036 sec

Use canSignalTimetable to repackage signal data from message EngineMsg into a signal
timetable.

signalTimetable = canSignalTimetable(msgRx, "EngineMsg");
head(signalTimetable)

ans=8×2 timetable
 Time VehicleSpeed EngineRPM
 ____________ ____________ _________

 0.070266 sec 0 250
 0.17624 sec 0 250
 0.28219 sec 0 250
 0.38811 sec 0 250
 0.49409 sec 0 250
 0.59903 sec 0 250
 0.70499 sec 0 250
 0.80992 sec 0 250

Plot the received values of signal VehicleSpeed over time and note how it reflects the three updates
in message data.

plot(signalTimetable.Time, signalTimetable.VehicleSpeed)
title("Vehicle Speed from EngineMsg", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Vehicle Speed")
ylim([-5 75])

 Periodic CAN Communication in MATLAB

14-33

https://www.mathworks.com/help/vnt/ug/cansignaltimetable.html

View Messages Configured for Periodic Transmission

To see messages configured on the transmitting channel for automatic transmission, use the
transmitConfiguration command.

transmitConfiguration(txCh)

Periodic Messages

ID Extended Name Data Rate (seconds)
--- -------- --------------- ----------------- --------------
100 false EngineMsg 0 0 0 0 70 0 0 0 0.100000
200 false TransmissionMsg 0 0 0 0 0 0 0 0 0.500000

Event Messages

None

Close the Channels and DBC-File

Close access to the channels and the DBC-file by clearing their variables from the workspace.

clear rxCh txCh
clear db

14 Vehicle Network Toolbox Examples

14-34

https://www.mathworks.com/help/vnt/ug/transmitconfiguration.html

Event-Based CAN Communication in MATLAB
This example shows you how to configure CAN channels and messages for transmit messages on
event. It uses MathWorks virtual CAN channels connected in a loopback configuration.

As this example is based on sending and receiving CAN messages on a virtual network, running CAN
Explorer in conjunction may provide a more complete understanding of what the code is doing. To
run CAN Explorer, open and configure it to use the same interface as the receiving channel of the
example. Make sure to start CAN Explorer before beginning to run the example in order to see all of
the messages as they occur.

This example describes the workflow for a CAN network, but the concept demonstrated also applies
to a CAN FD network.

Create the CAN Channels

Create CAN channels for message transmission and reception.

txCh = canChannel("MathWorks", "Virtual 1", 1);
rxCh = canChannel("MathWorks", "Virtual 1", 2);

Open the DBC-file that contains message and signal definitions, and attach it to both CAN channels.

db = canDatabase("CANDatabaseEvent.dbc");
txCh.Database = db;
rxCh.Database = db;

Create the CAN Message

Create CAN message EngineMsg using the database information.

msgEngineMsg = canMessage(db, "EngineMsg")

msgEngineMsg =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 100
 Extended: 0
 Name: 'EngineMsg'

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

 Event-Based CAN Communication in MATLAB

14-35

Configure the Message for Event-Based Transmission

To enable a message for event-based transmission, use the transmitEvent command specifying the
transmitting channel, the message to register on the channel, and a state value.

transmitEvent(txCh, msgEngineMsg, "On");

Start the Event-Based Transmission

Start the receiving and transmitting channels.

start(rxCh);
start(txCh);

Write new values to the Data property and directly to the VehicleSpeed signal to trigger automatic
event-based transmission of the message onto the CAN bus.

msgEngineMsg.Data = [250 100 0 0 20 0 0 0];
pause(1);
msgEngineMsg.Signals.VehicleSpeed = 60;
pause(1);

Stop the transmitting and receiving channels.

stop(txCh);
stop(rxCh);

Analyze the Behavior of Event-Based Transmission

The receiving channel now has two messages available, corresponding to the two updates that
resulted in two transmissions.

rxCh.MessagesAvailable

ans = 2

Receive the available messages. Inspect the messages and note that each has the data values set
previously to the Data property.

msgRx = receive(rxCh, Inf, "OutputFormat", "timetable")

msgRx=2×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ _____________ ________________________ ______ ____________ _____ ______

 0.088211 sec 100 false {'EngineMsg'} {[250 100 0 0 20 0 0 0]} 8 {1x1 struct} false false
 1.1006 sec 100 false {'EngineMsg'} {[250 100 0 0 60 0 0 0]} 8 {1x1 struct} false false

Inspect the signals and note that the second instance of VehicleSpeed has the data value set
previously to the VehicleSpeed signal.

signals = canSignalTimetable(msgRx)

signals=2×2 timetable
 Time VehicleSpeed EngineRPM
 ____________ ____________ _________

 0.088211 sec 20 2835

14 Vehicle Network Toolbox Examples

14-36

https://www.mathworks.com/help/vnt/ug/transmitevent.html

 1.1006 sec 60 2835

View Messages Configured for Event-Based Transmission

To see messages configured on the transmitting channel for automatic transmission, use the
transmitConfiguration command.

transmitConfiguration(txCh)

Periodic Messages

None

Event Messages

ID Extended Name Data
--- -------- --------- ---------------------
100 false EngineMsg 250 100 0 0 60 0 0 0

Close the Channels and DBC-File

Close access to the channels and the DBC-file by clearing their variables from the workspace.

clear rxCh txCh
clear db

 Event-Based CAN Communication in MATLAB

14-37

https://www.mathworks.com/help/vnt/ug/transmitconfiguration.html

Use Relative and Absolute Timestamps in CAN Communication
This example shows you how to use the InitialTimestamp property of a CAN channel to work with
relative and absolute timestamps for CAN messages. It uses MathWorks virtual CAN channels
connected in a loopback configuration. This example describes the workflow for a CAN network, but
the concept demonstrated also applies to a CAN FD network.

Open the DBC-File

Open the DBC-file to access the database definitions.

db = canDatabase("VehicleInfo.dbc")

db =
 Database with properties:

 Name: 'VehicleInfo'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex13648766\VehicleInfo.dbc'
 Nodes: {}
 NodeInfo: [0x0 struct]
 Messages: {'WheelSpeeds'}
 MessageInfo: [1x1 struct]
 Attributes: {'BusType'}
 AttributeInfo: [1x1 struct]
 UserData: []

Create the CAN Channels

Create CAN channels on which you can transmit and receive messages.

txCh = canChannel("MathWorks", "Virtual 1", 1)

txCh =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0

14 Vehicle Network Toolbox Examples

14-38

 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

rxCh = canChannel("MathWorks", "Virtual 1", 2)

rxCh =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0x0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

Attach the database directly to the receiving channel to apply database definitions to incoming
messages automatically.

rxCh.Database = db;

 Use Relative and Absolute Timestamps in CAN Communication

14-39

Create the CAN Message

Create a new CAN message by specifying the database and the message name WheelSpeeds to have
the database definition applied.

msg = canMessage(db, "WheelSpeeds")

msg =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 1200
 Extended: 0
 Name: 'WheelSpeeds'

 Data Details
 Timestamp: 0
 Data: [0 0 0 0 0 0 0 0]
 Signals: [1x1 struct]
 Length: 8

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1x1 can.Database]
 UserData: []

Start the CAN Channels

Start the channels to begin using them for transmission and reception.

start(rxCh)
start(txCh)

Transmit CAN Messages

The transmit function sends messages onto the network. Use pause to add delays between the
transmit operations. Update the LF_WSpeed signal value before each transmission.

msg.Signals.LF_WSpeed = 10;
transmit(txCh, msg)
pause(1);
msg.Signals.LF_WSpeed = 20;
transmit(txCh, msg)
pause(2);
msg.Signals.LF_WSpeed = 30;
transmit(txCh, msg)
pause(3);
msg.Signals.LF_WSpeed = 40;
transmit(txCh, msg)
pause(1);
msg.Signals.LF_WSpeed = 50;
transmit(txCh, msg)

14 Vehicle Network Toolbox Examples

14-40

https://www.mathworks.com/help/vnt/ug/transmit.html
https://www.mathworks.com/help/matlab/ref/pause.html

Receive the CAN Messages

The receive function receives CAN messages that occurred on the network.

stop(rxCh)
stop(txCh)
msgRx = receive(rxCh, Inf, "OutputFormat", "timetable")

msgRx=5×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ____ ________ _______________ ______________________ ______ ____________ _____ ______

 0.099503 sec 1200 false {'WheelSpeeds'} {[42 248 0 0 0 0 0 0]} 8 {1x1 struct} false false
 1.126 sec 1200 false {'WheelSpeeds'} {[46 224 0 0 0 0 0 0]} 8 {1x1 struct} false false
 3.1504 sec 1200 false {'WheelSpeeds'} {[50 200 0 0 0 0 0 0]} 8 {1x1 struct} false false
 6.1818 sec 1200 false {'WheelSpeeds'} {[54 176 0 0 0 0 0 0]} 8 {1x1 struct} false false
 7.1986 sec 1200 false {'WheelSpeeds'} {[58 152 0 0 0 0 0 0]} 8 {1x1 struct} false false

Inspect Signal Data

Use canSignalTimetable to repackage signal data from the received messages into a signal
timetable. Note that timestamp values represent time elapsed from the start of the CAN channel.

signalTimetable = canSignalTimetable(msgRx)

signalTimetable=5×4 timetable
 Time LR_WSpeed RR_WSpeed RF_WSpeed LF_WSpeed
 ____________ _________ _________ _________ _________

 0.099503 sec -100 -100 -100 10
 1.126 sec -100 -100 -100 20
 3.1504 sec -100 -100 -100 30
 6.1818 sec -100 -100 -100 40
 7.1986 sec -100 -100 -100 50

plot(signalTimetable.Time, signalTimetable.LF_WSpeed, "x")
title("Signal Data with Relative Time", "FontWeight", "bold")
xlabel("Relative Timestamp")
ylabel("Signal Value")
ylim([0 60])

 Use Relative and Absolute Timestamps in CAN Communication

14-41

https://www.mathworks.com/help/vnt/ug/receive.html
https://www.mathworks.com/help/vnt/ug/cansignaltimetable.html

Inspect InitialTimestamp Property

View the InitialTimestamp property of the receiving CAN channel. It is a datetime value that
represents the absolute time of when the channel is started.

rxCh.InitialTimestamp

ans = datetime
 01-Sep-2021 12:39:51

Analyze Data with Absolute Timestamps

Combine the relative timestamp of each message and the InitialTimestamp property to obtain the
absolute timestamp of each message. Set the absolute timestamps back into the message timetable as
the time vector.

msgRx.Time = msgRx.Time + rxCh.InitialTimestamp

msgRx=5×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________________ ____ ________ _______________ ______________________ ______ ____________ _____ ______

 01-Sep-2021 12:39:51 1200 false {'WheelSpeeds'} {[42 248 0 0 0 0 0 0]} 8 {1x1 struct} false false
 01-Sep-2021 12:39:52 1200 false {'WheelSpeeds'} {[46 224 0 0 0 0 0 0]} 8 {1x1 struct} false false
 01-Sep-2021 12:39:54 1200 false {'WheelSpeeds'} {[50 200 0 0 0 0 0 0]} 8 {1x1 struct} false false
 01-Sep-2021 12:39:57 1200 false {'WheelSpeeds'} {[54 176 0 0 0 0 0 0]} 8 {1x1 struct} false false

14 Vehicle Network Toolbox Examples

14-42

 01-Sep-2021 12:39:59 1200 false {'WheelSpeeds'} {[58 152 0 0 0 0 0 0]} 8 {1x1 struct} false false

The signal timetable created from the updated message timetable now also has absolute timestamps.

signalTimetable = canSignalTimetable(msgRx)

signalTimetable=5×4 timetable
 Time LR_WSpeed RR_WSpeed RF_WSpeed LF_WSpeed
 ____________________ _________ _________ _________ _________

 01-Sep-2021 12:39:51 -100 -100 -100 10
 01-Sep-2021 12:39:52 -100 -100 -100 20
 01-Sep-2021 12:39:54 -100 -100 -100 30
 01-Sep-2021 12:39:57 -100 -100 -100 40
 01-Sep-2021 12:39:59 -100 -100 -100 50

figure
plot(signalTimetable.Time, signalTimetable.LF_WSpeed, "x")
title("Signal Data with Absolute Time", "FontWeight", "bold")
xlabel("Absolute Timestamp")
ylabel("Signal Value")
ylim([0 60])

Close the Channels and DBC-File

Close access to the channels and the DBC-file by clearing their variables from the workspace.

 Use Relative and Absolute Timestamps in CAN Communication

14-43

clear rxCh txCh
clear db

14 Vehicle Network Toolbox Examples

14-44

Get Started with J1939 Parameter Groups in MATLAB
This example shows you how to create and manage J1939 parameter groups using information stored
in DBC-files. This example uses file J1939.dbc. Creating and using parameter groups this way is
recommended when needing to transmit data to a J1939 network.

Open the DBC-File

Open the DBC-file using canDatabase to access the definitions.

db = canDatabase("J1939.dbc")

db =
 Database with properties:

 Name: 'J1939'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex46196345\J1939.dbc'
 Nodes: {2x1 cell}
 NodeInfo: [2x1 struct]
 Messages: {2x1 cell}
 MessageInfo: [2x1 struct]
 Attributes: {3x1 cell}
 AttributeInfo: [3x1 struct]
 UserData: []

Create a Parameter Group

Use the j1939ParameterGroup function to create a parameter group using information contained
within the database.

pg = j1939ParameterGroup(db, "VehicleDataSingle")

pg =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 6
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 254
 DestinationAddress: 254

 Data Details:

 Timestamp: 0
 Data: [255 255 255 255 255 255 255 255]
 Signals: [1x1 struct]

 Other Information:

 UserData: []

 Get Started with J1939 Parameter Groups in MATLAB

14-45

https://www.mathworks.com/help/vnt/ug/candatabase.html
https://www.mathworks.com/help/vnt/ug/j1939parametergroup.html

Set Source and Destination Addresses

To fully define the parameter group and determine the logistics of its transmission on a network, set
the source and destination addresses.

pg.SourceAddress = 30

pg =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 6
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 30
 DestinationAddress: 254

 Data Details:

 Timestamp: 0
 Data: [255 255 255 255 255 255 255 255]
 Signals: [1x1 struct]

 Other Information:

 UserData: []

pg.DestinationAddress = 50

pg =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 6
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 30
 DestinationAddress: 50

 Data Details:

 Timestamp: 0
 Data: [255 255 255 255 255 255 255 255]
 Signals: [1x1 struct]

 Other Information:

 UserData: []

Set Priority

Set the Priority property to further customize the transmission.

14 Vehicle Network Toolbox Examples

14-46

pg.Priority = 5;

View Signal Information

Use the Signals property to see signal values for this parameter group. You can directly write to and
read from these signals to pack or unpack data in the parameter group.

pg.Signals

ans = struct with fields:
 VehicleSignal4: -1
 VehicleSignal3: -1
 VehicleSignal2: -1
 VehicleSignal1: -1

Change Signal Information

Write directly to a signal to change a value and read its current value back.

pg.Signals.VehicleSignal1 = 10

pg =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 5
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 30
 DestinationAddress: 50

 Data Details:

 Timestamp: 0
 Data: [10 0 255 255 255 255 255 255]
 Signals: [1x1 struct]

 Other Information:

 UserData: []

pg.Signals.VehicleSignal2 = 100

pg =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 5
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 30
 DestinationAddress: 50

 Get Started with J1939 Parameter Groups in MATLAB

14-47

 Data Details:

 Timestamp: 0
 Data: [10 0 100 0 255 255 255 255]
 Signals: [1x1 struct]

 Other Information:

 UserData: []

pg.Signals.VehicleSignal3 = 1000

pg =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 5
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 30
 DestinationAddress: 50

 Data Details:

 Timestamp: 0
 Data: [10 0 100 0 232 3 255 255]
 Signals: [1x1 struct]

 Other Information:

 UserData: []

pg.Signals.VehicleSignal4 = 10000

pg =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 5
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 30
 DestinationAddress: 50

 Data Details:

 Timestamp: 0
 Data: [10 0 100 0 232 3 16 39]
 Signals: [1x1 struct]

 Other Information:

14 Vehicle Network Toolbox Examples

14-48

 UserData: []

pg.Signals

ans = struct with fields:
 VehicleSignal4: 10000
 VehicleSignal3: 1000
 VehicleSignal2: 100
 VehicleSignal1: 10

Write New Direct Data

You can also write values directly into the Data property, although setting values through Signals is
generally recommended and preferred.

pg.Data(1:2) = [50 0]

pg =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 5
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 30
 DestinationAddress: 50

 Data Details:

 Timestamp: 0
 Data: [50 0 100 0 232 3 16 39]
 Signals: [1x1 struct]

 Other Information:

 UserData: []

pg.Signals

ans = struct with fields:
 VehicleSignal4: 10000
 VehicleSignal3: 1000
 VehicleSignal2: 100
 VehicleSignal1: 50

 Get Started with J1939 Parameter Groups in MATLAB

14-49

Get Started with J1939 Communication in MATLAB
This example shows you how to create and use J1939 channels to transmit and receive parameter
groups on a J1939 network. This example uses the database file J1939.dbc and MathWorks virtual
CAN channels connected in a loopback configuration.

Open the DBC-File

Open the DBC-file using canDatabase to access the definitions.

db = canDatabase("J1939.dbc")

db =
 Database with properties:

 Name: 'J1939'
 Path: 'C:\Users\michellw\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex33605241\J1939.dbc'
 Nodes: {2×1 cell}
 NodeInfo: [2×1 struct]
 Messages: {2×1 cell}
 MessageInfo: [2×1 struct]
 Attributes: {3×1 cell}
 AttributeInfo: [3×1 struct]
 UserData: []

Create the J1939 Channels

Use the function j1939Channel to create J1939 channels on which you can send and receive
information.

txCh = j1939Channel(db, "MathWorks", "Virtual 1", 1)

txCh =
 Channel with properties:

 Device Information:

 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0

 Data Details:

 ParameterGroupsAvailable: 0
 ParameterGroupsReceived: 0
 ParameterGroupsTransmitted: 0
 FilterPassList: []
 FilterBlockList: []

 Channel Information:

 Running: 0
 BusStatus: 'N/A'
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 SilentMode: 0

14 Vehicle Network Toolbox Examples

14-50

 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information:

 UserData: []

rxCh = j1939Channel(db, "MathWorks", "Virtual 1", 2)

rxCh =
 Channel with properties:

 Device Information:

 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0

 Data Details:

 ParameterGroupsAvailable: 0
 ParameterGroupsReceived: 0
 ParameterGroupsTransmitted: 0
 FilterPassList: []
 FilterBlockList: []

 Channel Information:

 Running: 0
 BusStatus: 'N/A'
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information:

 UserData: []

Create the J1939 Parameter Groups

Use the function j1939ParameterGroup to create a single-frame parameter group to send on the
network.

pgSingleFrame = j1939ParameterGroup(db, "VehicleDataSingle")

 Get Started with J1939 Communication in MATLAB

14-51

pgSingleFrame =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataSingle'
 PGN: 40192
 Priority: 6
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 254
 DestinationAddress: 254

 Data Details:

 Timestamp: 0
 Data: [255 255 255 255 255 255 255 255]
 Signals: [1×1 struct]

 Other Information:

 UserData: []

Set transmission details and signal data.

pgSingleFrame.SourceAddress = 30;
pgSingleFrame.DestinationAddress = 50;
pgSingleFrame.Signals.VehicleSignal1 = 25;
pgSingleFrame.Signals.VehicleSignal2 = 1000;
pgSingleFrame.Signals

ans = struct with fields:
 VehicleSignal4: -1
 VehicleSignal3: -1
 VehicleSignal2: 1000
 VehicleSignal1: 25

Using the same approach, create a multi-frame parameter group, then set transmission details and
signal data.

pgMultiFrame = j1939ParameterGroup(db, "VehicleDataMulti")

pgMultiFrame =
 ParameterGroup with properties:

 Protocol Data Unit Details:

 Name: 'VehicleDataMulti'
 PGN: 51200
 Priority: 6
 PDUFormatType: 'Peer-to-Peer (Type 1)'
 SourceAddress: 254
 DestinationAddress: 254

 Data Details:

 Timestamp: 0

14 Vehicle Network Toolbox Examples

14-52

 Data: [255 255 255 255 255 255 255 255 255 255 255 255]
 Signals: [1×1 struct]

 Other Information:

 UserData: []

pgMultiFrame.SourceAddress = 30;
pgMultiFrame.DestinationAddress = 255;
pgMultiFrame.Signals.VehicleSignal1 = 5;
pgMultiFrame.Signals.VehicleSignal2 = 650;
pgMultiFrame.Signals.VehicleSignal3 = 5000;
pgMultiFrame.Signals

ans = struct with fields:
 VehicleSignal6: -1
 VehicleSignal5: -1
 VehicleSignal4: -1
 VehicleSignal3: 5000
 VehicleSignal2: 650
 VehicleSignal1: 5

Start the J1939 Channels

Use the function start to start the J1939 channels for transmit and receive operations.

start(rxCh);
start(txCh);

Send J1939 Parameter Groups

The transmit function sends parameter groups onto the network. The J1939 channel automatically
sends parameter groups requiring multi-frame messaging via its transport protocol.

transmit(txCh, pgSingleFrame)
transmit(txCh, pgSingleFrame)
transmit(txCh, pgMultiFrame)
transmit(txCh, pgSingleFrame)
transmit(txCh, pgSingleFrame)
pause(2);

Receive the Parameter Groups

The receive function retrieves information from the channel which represents messaging that
occurred on the network.

pgRx = receive(rxCh, Inf)

pgRx=5×8 timetable
 Time Name PGN Priority PDUFormatType SourceAddress DestinationAddress Data Signals
 ___________ _________________ _____ ________ _____________________ _____________ __________________ __ ____________

 0.13955 sec VehicleDataSingle 40192 6 Peer-to-Peer (Type 1) 30 50 {[25 0 232 3 255 255 255 255]} {1×1 struct}
 0.14347 sec VehicleDataSingle 40192 6 Peer-to-Peer (Type 1) 30 50 {[25 0 232 3 255 255 255 255]} {1×1 struct}
 0.59386 sec VehicleDataMulti 51200 6 Peer-to-Peer (Type 1) 30 255 {[5 0 138 2 136 19 255 255 255 255 255 255]} {1×1 struct}
 0.76564 sec VehicleDataSingle 40192 6 Peer-to-Peer (Type 1) 30 50 {[25 0 232 3 255 255 255 255]} {1×1 struct}

 Get Started with J1939 Communication in MATLAB

14-53

 0.7702 sec VehicleDataSingle 40192 6 Peer-to-Peer (Type 1) 30 50 {[25 0 232 3 255 255 255 255]} {1×1 struct}

Inspect Received Parameter Groups Signals

View details of the received signals for an instance of the single-frame and the multiframe parameter
group.

pgRx.Signals{1}

ans = struct with fields:
 VehicleSignal4: -1
 VehicleSignal3: -1
 VehicleSignal2: 1000
 VehicleSignal1: 25

pgRx.Signals{3}

ans = struct with fields:
 VehicleSignal6: -1
 VehicleSignal5: -1
 VehicleSignal4: -1
 VehicleSignal3: 5000
 VehicleSignal2: 650
 VehicleSignal1: 5

Access Signal Values

The j1939SignalTimetable function allows you to easily extract and transform signal data from a
timetable of parameter groups.

sigTT = j1939SignalTimetable(pgRx)

sigTT = struct with fields:
 VehicleDataMulti: [1×6 timetable]
 VehicleDataSingle: [4×4 timetable]

sigTT.VehicleDataSingle

ans=4×4 timetable
 Time VehicleSignal4 VehicleSignal3 VehicleSignal2 VehicleSignal1
 ___________ ______________ ______________ ______________ ______________

 0.13955 sec -1 -1 1000 25
 0.14347 sec -1 -1 1000 25
 0.76564 sec -1 -1 1000 25
 0.7702 sec -1 -1 1000 25

sigTT.VehicleDataMulti

ans=1×6 timetable
 Time VehicleSignal6 VehicleSignal5 VehicleSignal4 VehicleSignal3 VehicleSignal2 VehicleSignal1
 ___________ ______________ ______________ ______________ ______________ ______________ ______________

 0.59386 sec -1 -1 -1 5000 650 5

14 Vehicle Network Toolbox Examples

14-54

Stop the J1939 Channels

To stop receiving data from the network, stop the J1939 channels using the stop function.

stop(rxCh);
stop(txCh);

 Get Started with J1939 Communication in MATLAB

14-55

Periodic CAN Message Transmission Behavior in Simulink
This example shows how to set up periodic transmission and reception of CAN messages in Simulink
using MathWorks virtual CAN channels. The virtual channels are connected in a loopback
configuration.

Vehicle Network Toolbox™ provides Simulink blocks for transmitting and receiving live messages via
Simulink models over Controller Area Networks (CAN). This example uses the CAN Configuration,
CAN Pack, CAN Transmit, CAN Receive and CAN Unpack blocks to perform data transfer over a CAN
bus.

14 Vehicle Network Toolbox Examples

14-56

https://www.mathworks.com/help/vnt/ug/canconfiguration.html
https://www.mathworks.com/help/vnt/ug/canpack.html
https://www.mathworks.com/help/vnt/ug/cantransmit.html
https://www.mathworks.com/help/vnt/ug/canreceive.html
https://www.mathworks.com/help/vnt/ug/canunpack.html

Transmit and Receive CAN Messages

Create a model to transmit two messages at different periods, receive only specified messages and
unpack the message with a specified ID.

• Use a CAN Transmit block to transmit the CAN message with ID 250 to transmit messages every 1
second.

• Use another CAN Transmit block to transmit the CAN message with ID 500 to transmit messages
every 0.5 seconds.

• Input a signal to both CAN Pack blocks to an auto-incrementing counter with a limit of 50.
• Both CAN Transmit blocks are connected to MathWorks virtual channel 1.

Use a CAN Receive block to receive CAN messages from MathWorks virtual channel 2. Set the block
to:

• Receive messages with ID 250 and 500 only.
• The Receive block generates a function call trigger if it receives a new message at any particular

timestep.

The CAN Unpack blocks are in a Function-Call Subsystem. The subsystem is executed only when a
new message is received by the CAN Receive block at a particular timestep.

Visualize Messages at Different Timestamps

Plot the results to see the counter value and timestamp for each unpacked message. The X-axis on the
plot corresponds to the simulation timestep. The timestamp plots show that the messages are sent at
the specified times. It can also be seen that the number of messages transmitted for ID 250 is half as
much transmitted for ID 500 due to the different periodic rates specified for them.

 Periodic CAN Message Transmission Behavior in Simulink

14-57

https://www.mathworks.com/help/vnt/ug/cantransmit.html
https://www.mathworks.com/help/vnt/ug/canpack.html
https://www.mathworks.com/help/vnt/ug/canreceive.html
https://www.mathworks.com/help/vnt/ug/canunpack.html
https://www.mathworks.com/help/simulink/slref/functioncallsubsystem.html

Extend the Example

MathWorks virtual CAN channels were used for this example. You can however connect your models
to other supported hardware. You can also modify the model to transmit at different rates or transmit
a combination of periodic and non-periodic messages.

This example uses the CAN blocks, but the concept demonstrated also applies to the CAN FD blocks
in Simulink.

14 Vehicle Network Toolbox Examples

14-58

Event-Based CAN Message Transmission Behavior in Simulink
This example shows how to use event-based CAN message transmission in Simulink with Vehicle
Network Toolbox. This feature allows for CAN and CAN FD message transmission when a change in
data from one time step to the next is detected.

A configuration option available on the CAN and CAN FD Transmit blocks enables transmission on
data change. When enabled, messages of particular CAN IDs transmit only when the data changes for
that ID. Each message is independently processed in every time step based on its ID. When disabled,
block operation and periodic transmit operation function normally. In addition, the event-based
transmission can be enabled along with periodic transmission to have both work together
simultaneously.

Prepare the Example Model

The included example model contains two CAN Pack blocks configured into a single CAN Transmit
block. One message's data is a constant while the other is a counter that changes at every time step.

Open the example model.

open EventTransmit

Prepare the CAN Database File Access

You can access the contents of CAN DBC-files with the canDatabase function. Through this function,
details about network nodes, messages, and signals are available. This DBC-file is used in the model
and is used to decode information sent from the model.

db = canDatabase("CANBusEvent.dbc")

db =
 Database with properties:

 Name: 'CANBusEvent'

 Event-Based CAN Message Transmission Behavior in Simulink

14-59

 Path: 'C:\Users\jpyle\Documents\MATLAB\ExampleManager\jpyle.21bExampleBlitz\vnt-ex59902587\CANBusEvent.dbc'
 Nodes: {'ECU'}
 NodeInfo: [1×1 struct]
 Messages: {2×1 cell}
 MessageInfo: [2×1 struct]
 Attributes: {}
 AttributeInfo: [0×0 struct]
 UserData: []

A test node is defined in the DBC-file.

node = nodeInfo(db,"ECU")

node = struct with fields:
 Name: 'ECU'
 Comment: ''
 Attributes: {}
 AttributeInfo: [0×0 struct]

The node transmits two CAN messages.

messageInfo(db,"Constant_Msg")

ans = struct with fields:
 Name: 'Constant_Msg'
 ProtocolMode: 'CAN'
 Comment: ''
 ID: 10
 Extended: 0
 J1939: []
 Length: 4
 DLC: 4
 BRS: 0
 Signals: {'Constant'}
 SignalInfo: [1×1 struct]
 TxNodes: {'ECU'}
 Attributes: {}
 AttributeInfo: [0×0 struct]

messageInfo(db,"Counter_Msg")

ans = struct with fields:
 Name: 'Counter_Msg'
 ProtocolMode: 'CAN'
 Comment: ''
 ID: 20
 Extended: 0
 J1939: []
 Length: 4
 DLC: 4
 BRS: 0
 Signals: {'Counter'}
 SignalInfo: [1×1 struct]
 TxNodes: {'ECU'}
 Attributes: {}

14 Vehicle Network Toolbox Examples

14-60

 AttributeInfo: [0×0 struct]

Execute the Model with Event-Based Transmission

Enable Event-Based Transmission Only

Enable the event-based transmission in the CAN Transmit block programmatically. Also, disable
periodic transmission.

db = canDatabase("CANBusEvent.dbc")

db =
 Database with properties:

 Name: 'CANBusEvent'
 Path: 'C:\Users\jpyle\Documents\MATLAB\ExampleManager\jpyle.21bExampleBlitz\vnt-ex59902587\CANBusEvent.dbc'
 Nodes: {'ECU'}
 NodeInfo: [1×1 struct]
 Messages: {2×1 cell}
 MessageInfo: [2×1 struct]
 Attributes: {}
 AttributeInfo: [0×0 struct]
 UserData: []

set_param('EventTransmit/CAN Transmit', 'EnableEventTransmit', 'on');
set_param('EventTransmit/CAN Transmit', 'EnablePeriodicTransmit', 'off');

Note that the block display changes after applying the settings.

Configure a CAN Channel in MATLAB for Communication with the Model

Create a CAN channel using virtual device communication to interface with the Simulink model. Also,
attach the CAN database to it to automatically decode incoming messages.

canCh = canChannel("Mathworks","Virtual 1",2)

canCh =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information

 Event-Based CAN Message Transmission Behavior in Simulink

14-61

 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

canCh.Database = db;

Start the CAN channel to go online.

start(canCh);

Run the Model

Assign a simulation run time and start the model.

t = "10";
set_param("EventTransmit","StopTime",t)
set_param("EventTransmit","SimulationCommand","start");

Wait until the simulation starts.

while strcmp(get_param("EventTransmit","SimulationStatus"),"stopped")
end

Wait until the simulation ends.

pause(2)

Receive Messages in MATLAB

Receive all messages from the bus generated by the model.

msg = receive(canCh,inf,"OutputFormat","timetable")

msg=12×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 __________ __ ________ ________________ ____________ ______ ____________ _____ ______

14 Vehicle Network Toolbox Examples

14-62

 5.204 sec 10 false {'Constant_Msg'} {[5 0 0 0]} 4 {1×1 struct} false false
 5.204 sec 20 false {'Counter_Msg' } {[0 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[1 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[2 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[3 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[4 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[5 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[6 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[7 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[8 0 0 0]} 4 {1×1 struct} false false
 5.206 sec 20 false {'Counter_Msg' } {[9 0 0 0]} 4 {1×1 struct} false false
 5.2061 sec 20 false {'Counter_Msg' } {[10 0 0 0]} 4 {1×1 struct} false false

Stop the CAN channel in MATLAB.

stop(canCh);

Explore the Message and Signal Data Received

The number of times a CAN ID has been received is plotted below. The message "Constant_Msg"
(CAN ID 10) is received only once because its data does not change after its initial setting. The
message "Counter_Msg" (CAN ID 20) is received from every time step because the data changed
continuously in it as the model ran.

% Define X and Y axis.
x = 1:length(msg.ID);
y = msg.ID;

% Plot the graph for both the CAN IDs received.
stem(x,y,'filled')
hold on;
yMax = max(msg.ID)+5;
ylim([0 yMax])

% Label the graph.
xlabel("Number of CAN messages");
ylabel("CAN ID");
legend("CAN ID","Location","northeast");
legend("boxoff");
hold off;

 Event-Based CAN Message Transmission Behavior in Simulink

14-63

Next, plot the signals received in each message over the same simulation run.

% Create a structure with signal details.
signalTimeTable = canSignalTimetable(msg);

% Plot the signal values of "Constant_Msg".
x1 = 1:height(signalTimeTable.Constant_Msg);
y1 = signalTimeTable.Constant_Msg.Constant;
plot(x1, y1,"Marker","o");
hold on

% Plot the signal values of "Counter_Msg".
x2 = 1:height(signalTimeTable.Counter_Msg);
y2 = signalTimeTable.Counter_Msg.Counter;
plot(x2, y2,"Marker","o");

% Determine the maximum value for y-axis for scaling of graph.
y1Max = max(signalTimeTable.Constant_Msg.Constant);
y2Max = max(signalTimeTable.Counter_Msg.Counter);
yMax = max(y1Max,y2Max)+5;
ylim([0 yMax]);

% Label the graph.
xlabel("Number of Times Signals Received");
ylabel("CAN Signal Value");
legend("Constant","Counter","Location","northeastoutside");

14 Vehicle Network Toolbox Examples

14-64

legend("boxoff");
hold off

The signal "Constant" (in message "Constant_Msg") is plotted only once, while the signal "Counter"
(in message "Counter_Msg") is plotted for every time step. This is due to event-based transmission
being enabled in the CAN Transmit block, which transmits a CAN message only if data has changed
for that CAN ID compared with the previously received message.

As the signal in message "Counter_Msg" is a counter, which increments by 1 at every time step, a
linear curve can be seen for it.

Each data points represents a transmission with event-based transmission enabled, hence signal
"Counter" is received at every time step, but signal "Constant" is received only once.

Execute the Model with Event-Based and Periodic Transmission

Enable Both Transmission Modes

Enable the event transmission in the CAN Transmit block programmatically. Also, enable the periodic
transmission and set a message period.

set_param('EventTransmit/CAN Transmit', 'EnableEventTransmit', 'on');
set_param('EventTransmit/CAN Transmit', 'EnablePeriodicTransmit', 'on');
set_param('EventTransmit/CAN Transmit', 'MessagePeriod', '0.1');

Note that the block display changes after applying the settings.

 Event-Based CAN Message Transmission Behavior in Simulink

14-65

Configure a CAN Channel in MATLAB for Communication with the Model

Create a CAN channel using virtual device communication to interface with the Simulink model. Also,
attach the CAN database to it to automatically decode incoming messages.

canCh = canChannel("Mathworks","Virtual 1",2)

canCh =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 2
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: []
 UserData: []

canCh.Database = db;

Start the CAN channel to go online.

14 Vehicle Network Toolbox Examples

14-66

start(canCh);

Run the Model

Assign a simulation run time and start the model.

t = "20";
set_param("EventTransmit","StopTime",t)
set_param("EventTransmit","SimulationCommand","start");

Wait until the simulation starts.

while strcmp(get_param("EventTransmit","SimulationStatus"),"stopped")
end

Wait until the simulation ends.

pause(5);

Receive Messages in MATLAB

Receive all messages from the bus generated by the model.

msg = receive(canCh,Inf,"OutputFormat","timetable")

msg=22×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 __________ __ ________ ________________ ____________ ______ ____________ _____ ______

 4.598 sec 10 false {'Constant_Msg'} {[5 0 0 0]} 4 {1×1 struct} false false
 4.598 sec 20 false {'Counter_Msg' } {[0 0 0 0]} 4 {1×1 struct} false false
 4.5987 sec 20 false {'Counter_Msg' } {[1 0 0 0]} 4 {1×1 struct} false false
 4.5987 sec 20 false {'Counter_Msg' } {[2 0 0 0]} 4 {1×1 struct} false false
 4.5987 sec 20 false {'Counter_Msg' } {[3 0 0 0]} 4 {1×1 struct} false false
 4.5987 sec 20 false {'Counter_Msg' } {[4 0 0 0]} 4 {1×1 struct} false false
 4.5987 sec 20 false {'Counter_Msg' } {[5 0 0 0]} 4 {1×1 struct} false false
 4.5987 sec 20 false {'Counter_Msg' } {[6 0 0 0]} 4 {1×1 struct} false false
 4.5987 sec 20 false {'Counter_Msg' } {[7 0 0 0]} 4 {1×1 struct} false false
 4.5987 sec 20 false {'Counter_Msg' } {[8 0 0 0]} 4 {1×1 struct} false false
 4.5988 sec 20 false {'Counter_Msg' } {[9 0 0 0]} 4 {1×1 struct} false false
 4.5988 sec 20 false {'Counter_Msg' } {[10 0 0 0]} 4 {1×1 struct} false false
 4.5988 sec 20 false {'Counter_Msg' } {[11 0 0 0]} 4 {1×1 struct} false false
 4.5988 sec 20 false {'Counter_Msg' } {[12 0 0 0]} 4 {1×1 struct} false false
 4.5988 sec 20 false {'Counter_Msg' } {[13 0 0 0]} 4 {1×1 struct} false false
 4.5988 sec 20 false {'Counter_Msg' } {[14 0 0 0]} 4 {1×1 struct} false false
 ⋮

Stop the CAN channel in MATLAB.

stop(canCh);

Explore the Data Received

Plot the data received in each message over the same period.

% Create a structure with signal details.
signalTimeTable = canSignalTimetable(msg);

 Event-Based CAN Message Transmission Behavior in Simulink

14-67

% Plot the signal values of "Constant_Msg".
x3 = 1:height(signalTimeTable.Constant_Msg);
y3 = signalTimeTable.Constant_Msg.Constant;
plot(x3, y3,"Marker","o");
hold on

% Plot the signal values of "Counter_Msg".
x4 = 1:height(signalTimeTable.Counter_Msg);
y4 = signalTimeTable.Counter_Msg.Counter;
plot(x4, y4,"Marker","o");

% Determine the maximum value for y-axis for scaling of graph.
y3Max = max(signalTimeTable.Constant_Msg.Constant);
y4Max = max(signalTimeTable.Counter_Msg.Counter);
yMax = max(y3Max,y4Max)+5;
ylim([0 yMax]);

% Label the graph.
xlabel("Number of Times Signals Received");
ylabel("CAN Signal Value");
legend("Constant","Counter","Location","northeastoutside");
legend("boxoff");
hold off

The plot shows that the signal "Constant" in message "Constant_Msg" is received only a few times;
once at the start due to the event-based transmission, and later due to the periodic nature of the
transmission. This is because the input value to the signal is kept constant.

14 Vehicle Network Toolbox Examples

14-68

While the value for signal "Counter" changes at every time step in the message "Counter_Msg", it is
received continuously due to the event-based transmission, and later there are a few more
transmissions because periodic transmission is enabled.

 Event-Based CAN Message Transmission Behavior in Simulink

14-69

Set up Communication Between Host and Target Models
This example shows you how to set up CAN communication between host-side CAN Vector blocks and
target models. This example uses:

• The Embedded Coder™ product with CANcaseXL hardware to open and run the model.
• The Spectrum Digital F28335 eZdsp™ board to run the target model.

Transmit and Receive Using a Host Model

The host model receives CAN messages through Channel 1 of Vector CANcaseXL hardware. The
model transmits CAN messages using Channel 1 of Vector hardware over the CAN bus.

14 Vehicle Network Toolbox Examples

14-70

Transmit and Receive Using a Target Model

The target model contains the eCAN Receive and Transmit blocks that are packed and unpacked
using the CAN Pack and Unpack blocks from Vehicle Network Toolbox™. To run this model
successfully, the target model configuration settings done must match the host model configuration
settings. The message that the target model receives controls the GPIO Digital outputs on the target
DSP board.

Communication Between the Host and Target Models

Run the model demoVNTSL_CANMessaging_Target.slx on the target hardware.

Open the host side model demoVNTSL_CANMessaging_Host.slx.

Use the CAN Configuration block to configure a CAN channel on the Vector CAN hardware installed
on your system.

Run the host communication model on your system.

 Set up Communication Between Host and Target Models

14-71

CAN Messages are sent between the host model on your system and the target model running on
your target hardware. The host receives, unpacks, and displays them using the display blocks and the
scopes. The message transmitted by the host model controls the GPIO Digital outputs on the target
hardware.

Vector CANcaseXL device was used for this example. You can however connect your models to other
supported hardware.

14 Vehicle Network Toolbox Examples

14-72

Log and Replay CAN Messages
This example shows you how to log and replay CAN messages using MathWorks Virtual CAN channels
in Simulink®. You can update this model to connect to supported hardware on your system.

Load the saved CAN message from sourceMsgs.mat file from the examples folder. The file contains
CAN messages representing a 90 second drive cycle around a test track.

Convert these messages to a format compatible with the CAN Replay block and save it to a separate
file.

 Name Size Bytes Class Attributes

 canMsgTimetable 100000x8 33510851 timetable
 canMsgs 1x1 2401176 struct

CAN Replay Model

This model contains:

• A CAN Replay block that transmits to MathWorks Virtual Channel 1.
• A CAN Receive block that receives the messages on a CAN network, through MathWorks

Virtual Channel 2.

The CAN Receive block is configured to block all extended IDs and allow only the WheelSpeed
message with the standard ID 1200 to pass.

 Log and Replay CAN Messages

14-73

The Wheel Speeds subsystem unpacks the wheel speed information from the received CAN messages
and plots them to a scope. The subsystem also logs the messages to a file.

Visualize Wheel Speed Information

The plot shows the wheel speed for all wheels for the duration of the test drive.

14 Vehicle Network Toolbox Examples

14-74

Load the Logged Message File

The CAN Log block creates a unique file each time you run the model. Use dir in the MATLAB
Command Window to find the latest log file.

WheelSpeeds_2011-May-03_020634.mat

 Name Size Bytes Class Attributes

 canMsgTimetable 100000x8 33510851 timetable
 canMsgs 1x1 2401176 struct
 outMsgs 1x1 154320 struct

Convert Logged Messages

Use canMessageTimetable to convert messages logged during the simulation to a timetable that
you can use in the command window.

 Log and Replay CAN Messages

14-75

To access message signals directly, use the appropriate database file in the conversion along with
canSignalTimetable.

ans =

 15x8 timetable

 Time ID Extended Name Data Length Signals Error Remote
 ___________ ____ ________ _______________ ___________________________ ______ ____________ _____ ______

 0.10701 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.1153 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.12349 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.13178 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.13998 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.14826 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.15647 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.16475 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.17338 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.18122 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.18941 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.19768 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.20591 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.2142 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false
 0.2224 sec 1200 false {'WheelSpeeds'} {[39 16 39 16 39 16 39 16]} 8 {1x1 struct} false false

ans =

 15x4 timetable

 Time LR_WSpeed RR_WSpeed RF_WSpeed LF_WSpeed
 ___________ _________ _________ _________ _________

 0.10701 sec 0 0 0 0
 0.1153 sec 0 0 0 0
 0.12349 sec 0 0 0 0
 0.13178 sec 0 0 0 0
 0.13998 sec 0 0 0 0
 0.14826 sec 0 0 0 0
 0.15647 sec 0 0 0 0
 0.16475 sec 0 0 0 0
 0.17338 sec 0 0 0 0
 0.18122 sec 0 0 0 0
 0.18941 sec 0 0 0 0
 0.19768 sec 0 0 0 0
 0.20591 sec 0 0 0 0
 0.2142 sec 0 0 0 0
 0.2224 sec 0 0 0 0

MathWorks CAN Virtual channels were used for this example. You can however connect your models
to other supported hardware.

14 Vehicle Network Toolbox Examples

14-76

Get Started with J1939 Communication in Simulink
This example shows you how to use J1939 blocks to directly send and receive Parameter Group (PG)
messages in Simulink.

Vehicle Network Toolbox provides J1939 Simulink blocks for receiving and transmitting Parameter
Groups via Simulink models over Controller Area Networks (CAN). This example performs data
transfer over a CAN bus using the J1939 Network Configuration, J1939 Node Configuration, J1939
CAN Transport Layer, J1939 Transmit and J1939 Receive blocks. It also uses MathWorks virtual CAN
channels connected in a loopback configuration.

Set Up J1939 Block Parameters

Create a model to set up J1939 receive and transmit over the network. The model is configured to
perform single frame transmission between two nodes defined in the J1939 DBC-file.

• Use a J1939 Network Configuration block and select file J1939.dbc. This J1939 database file
consists of two nodes and a couple of single-frame and multiframe messages.

• Use a J1939 CAN Transport Layer block and set the Device to MathWorks virtual channel 1. The
transport layer is configured to transfer J1939 messages over CAN via the specified virtual
channel.

• Use basic Simulink source blocks to connect to a J1939 Transmit block. The J1939 Transmit block
is set to queue data for transmit at each timestep when the Trigger port is enabled. For this
example, a periodic trigger subsystem sends a high pulse every 50 milliseconds.

• Use the J1939 Receive block to receive the messages transmitted over the network.

 Get Started with J1939 Communication in Simulink

14-77

https://www.mathworks.com/help/vnt/ug/j1939networkconfiguration.html
https://www.mathworks.com/help/vnt/ug/j1939nodeconfiguration.html
https://www.mathworks.com/help/vnt/ug/j1939cantransportlayer.html
https://www.mathworks.com/help/vnt/ug/j1939cantransportlayer.html
https://www.mathworks.com/help/vnt/ug/j1939transmit.html
https://www.mathworks.com/help/vnt/ug/j1939receive.html
https://www.mathworks.com/help/vnt/ug/j1939networkconfiguration.html
https://www.mathworks.com/help/vnt/ug/j1939cantransportlayer.html
https://www.mathworks.com/help/vnt/ug/j1939transmit.html
https://www.mathworks.com/help/vnt/ug/j1939receive.html

Visualize Signals Received on the Network

Plot the results to see the vehicle signal values received over the network. The X-axis corresponds to
the simulation timestep.

14 Vehicle Network Toolbox Examples

14-78

Get Started with MDF-Files
This example shows you how to open MDF-files and access information about the file and its contents.

Open an MDF-File

Open an MDF-file using mdf by specifying the name of the target file. Many basic details about the
file are provided. This sample file was created using Vector CANape™.

m = mdf("CANapeBasic.MF4")

m =
 MDF with properties:

 File Details
 Name: 'CANapeBasic.MF4'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex51113426\CANapeBasic.MF4'
 Author: 'Otmar Schneider'
 Department: 'PMC @ Vector Informatik GmbH'
 Project: 'Demo'
 Subject: 'XCPSim'
 Comment: 'Example file created with Vector CANape'
 Version: '4.10'
 DataSize: 176545
 InitialTimestamp: 2016-04-21 14:27:17.000010630

 Creator Details
 ProgramIdentifier: 'MCD14.02'
 Creator: [1x1 struct]

 File Contents
 Attachment: [0x1 struct]
 ChannelNames: {2x1 cell}
 ChannelGroup: [1x2 struct]

 Options
 Conversion: Numeric

View File Creation Details

Information about the originating tool of the MDF-file is found in the Creator property.

m.Creator

ans = struct with fields:
 VendorName: 'Vector Informatik GmbH'
 ToolName: 'CANape'
 ToolVersion: '14.0.20.2386'
 UserName: 'visosr'
 Comment: 'created'

View Channel Group Details

Data in an MDF-file is stored in channels contained within channel groups. This sample file contains
two channel groups.

 Get Started with MDF-Files

14-79

https://www.mathworks.com/help/vnt/ug/mdf.html

m.ChannelGroup(1)

ans = struct with fields:
 AcquisitionName: '10 ms'
 Comment: '10 ms'
 NumSamples: 1993
 DataSize: 153461
 Sorted: 1
 Channel: [74x1 struct]

m.ChannelGroup(2)

ans = struct with fields:
 AcquisitionName: '100ms'
 Comment: '100ms'
 NumSamples: 199
 DataSize: 23084
 Sorted: 1
 Channel: [46x1 struct]

View Channel Details

Within a channel group, details about each channel are stored.

m.ChannelGroup(1).Channel(1)

ans = struct with fields:
 Name: 'Counter_B4'
 DisplayName: ''
 ExtendedNamePrefix: 'XCPsim'
 Description: 'Single bit demo signal (bit from a byte shifting)'
 Comment: 'Single bit demo signal (bit from a byte shifting)'
 Unit: ''
 Type: FixedLength
 DataType: IntegerUnsignedLittleEndian
 NumBits: 1
 ComponentType: None
 CompositionType: None
 ConversionType: ValueToText

Quickly Access Channels Names

The ChannelNames property allows quick access to find specific channels within the various channel
groups.

m.ChannelNames

ans=2×1 cell array
 {74x1 cell}
 {46x1 cell}

m.ChannelNames{1}

ans = 74x1 cell
 {'Counter_B4' }

14 Vehicle Network Toolbox Examples

14-80

 {'Counter_B5' }
 {'Counter_B6' }
 {'Counter_B7' }
 {'PWM' }
 {'PWM_Level' }
 {'PWMFiltered' }
 {'Triangle' }
 {'map1_8_8_uc_measure[0][0]'}
 {'map1_8_8_uc_measure[0][1]'}
 {'map1_8_8_uc_measure[0][2]'}
 {'map1_8_8_uc_measure[0][3]'}
 {'map1_8_8_uc_measure[0][4]'}
 {'map1_8_8_uc_measure[0][5]'}
 {'map1_8_8_uc_measure[0][6]'}
 {'map1_8_8_uc_measure[0][7]'}
 {'map1_8_8_uc_measure[1][0]'}
 {'map1_8_8_uc_measure[1][1]'}
 {'map1_8_8_uc_measure[1][2]'}
 {'map1_8_8_uc_measure[1][3]'}
 {'map1_8_8_uc_measure[1][4]'}
 {'map1_8_8_uc_measure[1][5]'}
 {'map1_8_8_uc_measure[1][6]'}
 {'map1_8_8_uc_measure[1][7]'}
 {'map1_8_8_uc_measure[2][0]'}
 {'map1_8_8_uc_measure[2][1]'}
 {'map1_8_8_uc_measure[2][2]'}
 {'map1_8_8_uc_measure[2][3]'}
 {'map1_8_8_uc_measure[2][4]'}
 {'map1_8_8_uc_measure[2][5]'}
 ⋮

Find Channels in an MDF-File

The channelList function is available to quickly and easily query for channel details within an MDF-
file. It returns a case-insensitive, partial match to the provided input by default, but an exact match
can also be used.

channelList(m, "PWM")

ans=3×9 table
 ChannelName ChannelGroupNumber ChannelGroupNumSamples ChannelGroupAcquisitionName ChannelGroupComment ChannelDisplayName ChannelUnit ChannelComment ChannelDescription
 _____________ __________________ ______________________ ___________________________ ___________________ __________________ ___________ __ __

 "PWM" 1 1993 10 ms 10 ms "" <undefined> Pulse width signal from PWM_level and Triangle "Pulse width signal from PWM_level and Triangle"
 "PWM_Level" 1 1993 10 ms 10 ms "" <undefined> <undefined> ""
 "PWMFiltered" 1 1993 10 ms 10 ms "" <undefined> Low pass filtered PWM signal "Low pass filtered PWM signal"

channelList(m, "PWM", "ExactMatch", true)

ans=1×9 table
 ChannelName ChannelGroupNumber ChannelGroupNumSamples ChannelGroupAcquisitionName ChannelGroupComment ChannelDisplayName ChannelUnit ChannelComment ChannelDescription
 ___________ __________________ ______________________ ___________________________ ___________________ __________________ ___________ __ __

 "PWM" 1 1993 10 ms 10 ms "" <undefined> Pulse width signal from PWM_level and Triangle "Pulse width signal from PWM_level and Triangle"

 Get Started with MDF-Files

14-81

https://www.mathworks.com/help/vnt/ug/channellist.html

Close the File

Close access to the MDF-file by clearing its variable from the workspace.

clear m

14 Vehicle Network Toolbox Examples

14-82

Read Data from MDF-Files
This example shows you how to read channel data from an MDF-file.

Open the MDF-file

Before reading channel data from an MDF-file, open access to the file with the mdf command.

m = mdf("CANapeReadDemo.MF4")

m =
 MDF with properties:

 File Details
 Name: 'CANapeReadDemo.MF4'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex94427230\CANapeReadDemo.MF4'
 Author: 'Otmar Schneider'
 Department: 'PMC @ Vector Informatik GmbH'
 Project: 'Demo'
 Subject: 'XCPSim'
 Comment: 'Example file created with Vector CANape'
 Version: '4.10'
 DataSize: 176545
 InitialTimestamp: 2016-04-21 14:27:17.000010630

 Creator Details
 ProgramIdentifier: 'MCD14.02'
 Creator: [1x1 struct]

 File Contents
 Attachment: [0x1 struct]
 ChannelNames: {2x1 cell}
 ChannelGroup: [1x2 struct]

 Options
 Conversion: Numeric

Specify Data to Read

The read command is used to retrieve data from the MDF-file with several variations. It requires two
primary arguments. One is the numeric index of the channel group from which to read. Second is the
name(s) of the channels in the channel group to read. Information about these items is available from
the MDF-file.

m.ChannelGroup(1)

ans = struct with fields:
 AcquisitionName: '10 ms'
 Comment: '10 ms'
 NumSamples: 1993
 DataSize: 153461
 Sorted: 1
 Channel: [74x1 struct]

m.ChannelNames{1}

 Read Data from MDF-Files

14-83

https://www.mathworks.com/help/vnt/ug/mdf.html
https://www.mathworks.com/help/vnt/ug/read.html

ans = 74x1 cell
 {'Counter_B4' }
 {'Counter_B5' }
 {'Counter_B6' }
 {'Counter_B7' }
 {'PWM' }
 {'PWM_Level' }
 {'PWMFiltered' }
 {'Triangle' }
 {'map1_8_8_uc_measure[0][0]'}
 {'map1_8_8_uc_measure[0][1]'}
 {'map1_8_8_uc_measure[0][2]'}
 {'map1_8_8_uc_measure[0][3]'}
 {'map1_8_8_uc_measure[0][4]'}
 {'map1_8_8_uc_measure[0][5]'}
 {'map1_8_8_uc_measure[0][6]'}
 {'map1_8_8_uc_measure[0][7]'}
 {'map1_8_8_uc_measure[1][0]'}
 {'map1_8_8_uc_measure[1][1]'}
 {'map1_8_8_uc_measure[1][2]'}
 {'map1_8_8_uc_measure[1][3]'}
 {'map1_8_8_uc_measure[1][4]'}
 {'map1_8_8_uc_measure[1][5]'}
 {'map1_8_8_uc_measure[1][6]'}
 {'map1_8_8_uc_measure[1][7]'}
 {'map1_8_8_uc_measure[2][0]'}
 {'map1_8_8_uc_measure[2][1]'}
 {'map1_8_8_uc_measure[2][2]'}
 {'map1_8_8_uc_measure[2][3]'}
 {'map1_8_8_uc_measure[2][4]'}
 {'map1_8_8_uc_measure[2][5]'}
 ⋮

Read a Subset of Data by Index

To read just a subset of data by index, the index range is provided as input to the read command.

data = read(m, 1, m.ChannelNames{1}, 1, 10)

data=10×74 timetable
 Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM PWM_Level PWMFiltered Triangle map1_8_8_uc_measure_0__0_ map1_8_8_uc_measure_0__1_ map1_8_8_uc_measure_0__2_ map1_8_8_uc_measure_0__3_ map1_8_8_uc_measure_0__4_ map1_8_8_uc_measure_0__5_ map1_8_8_uc_measure_0__6_ map1_8_8_uc_measure_0__7_ map1_8_8_uc_measure_1__0_ map1_8_8_uc_measure_1__1_ map1_8_8_uc_measure_1__2_ map1_8_8_uc_measure_1__3_ map1_8_8_uc_measure_1__4_ map1_8_8_uc_measure_1__5_ map1_8_8_uc_measure_1__6_ map1_8_8_uc_measure_1__7_ map1_8_8_uc_measure_2__0_ map1_8_8_uc_measure_2__1_ map1_8_8_uc_measure_2__2_ map1_8_8_uc_measure_2__3_ map1_8_8_uc_measure_2__4_ map1_8_8_uc_measure_2__5_ map1_8_8_uc_measure_2__6_ map1_8_8_uc_measure_2__7_ map1_8_8_uc_measure_3__0_ map1_8_8_uc_measure_3__1_ map1_8_8_uc_measure_3__2_ map1_8_8_uc_measure_3__3_ map1_8_8_uc_measure_3__4_ map1_8_8_uc_measure_3__5_ map1_8_8_uc_measure_3__6_ map1_8_8_uc_measure_3__7_ map1_8_8_uc_measure_4__0_ map1_8_8_uc_measure_4__1_ map1_8_8_uc_measure_4__2_ map1_8_8_uc_measure_4__3_ map1_8_8_uc_measure_4__4_ map1_8_8_uc_measure_4__5_ map1_8_8_uc_measure_4__6_ map1_8_8_uc_measure_4__7_ map1_8_8_uc_measure_5__0_ map1_8_8_uc_measure_5__1_ map1_8_8_uc_measure_5__2_ map1_8_8_uc_measure_5__3_ map1_8_8_uc_measure_5__4_ map1_8_8_uc_measure_5__5_ map1_8_8_uc_measure_5__6_ map1_8_8_uc_measure_5__7_ map1_8_8_uc_measure_6__0_ map1_8_8_uc_measure_6__1_ map1_8_8_uc_measure_6__2_ map1_8_8_uc_measure_6__3_ map1_8_8_uc_measure_6__4_ map1_8_8_uc_measure_6__5_ map1_8_8_uc_measure_6__6_ map1_8_8_uc_measure_6__7_ map1_8_8_uc_measure_7__0_ map1_8_8_uc_measure_7__1_ map1_8_8_uc_measure_7__2_ map1_8_8_uc_measure_7__3_ map1_8_8_uc_measure_7__4_ map1_8_8_uc_measure_7__5_ map1_8_8_uc_measure_7__6_ map1_8_8_uc_measure_7__7_ map1_8_8_uc_measure t
 ______________ __________ __________ __________ __________ ___ _________ ___________ ________ ___________________ __________

 0.00082554 sec 0 0 1 0 100 0 99 18 175 167 149 127 108 98 103 121 168 162 147 127 110 102 105 120 158 155 143 126 110 99 98 109 149 151 142 127 109 94 86 90 144 149 143 128 109 90 75 73 141 149 145 131 112 90 71 64 138 148 146 134 116 95 77 69 134 146 145 136 122 105 92 88 175 0.00082554
 0.010826 sec 0 0 1 0 100 0 99 17 175 167 150 127 108 99 104 121 168 162 147 128 111 102 105 120 158 156 144 127 110 99 98 109 150 151 142 127 109 94 86 90 144 150 143 129 110 90 75 72 141 149 145 132 112 90 71 64 138 148 146 135 116 95 77 69 134 146 146 137 122 106 92 88 175 0.010826
 0.020826 sec 0 0 1 0 100 0 99 16 175 167 150 128 108 99 104 121 168 163 148 128 111 102 106 120 158 156 144 127 110 99 98 108 150 152 143 127 109 94 86 90 145 150 144 129 110 90 75 72 141 150 145 132 112 90 71 64 138 149 146 135 117 96 77 70 134 146 146 137 122 106 92 88 175 0.020826
 0.030826 sec 0 0 1 0 100 0 99 15 176 168 150 128 109 99 104 121 169 163 148 129 112 103 106 120 159 156 145 128 111 99 98 108 150 152 143 128 110 94 86 90 145 150 144 130 110 90 75 72 142 150 146 133 113 90 72 64 139 149 147 135 117 96 78 70 135 147 146 137 123 106 93 89 176 0.030826
 0.040826 sec 0 0 1 0 100 0 99 14 176 168 151 129 109 100 104 121 169 163 148 129 112 103 106 120 159 157 145 128 111 100 98 108 151 152 144 128 110 94 86 90 145 151 145 130 111 90 75 72 142 150 146 133 113 90 72 64 139 150 147 135 117 96 78 70 135 147 146 137 123 106 93 89 176 0.040826
 0.050826 sec 0 0 1 0 100 0 99 13 176 168 151 129 110 100 104 121 169 163 149 130 112 103 106 120 159 157 146 129 112 100 98 108 151 153 144 129 111 95 86 90 146 151 145 131 111 91 76 72 143 151 147 133 113 91 72 64 140 150 147 136 118 96 78 70 135 147 147 138 123 107 93 89 176 0.050826
 0.060826 sec 0 0 1 0 100 0 99 12 176 169 152 130 110 101 105 121 169 164 149 130 113 103 106 120 160 158 146 129 112 100 98 108 151 153 145 129 111 95 86 89 146 152 145 131 111 91 76 72 143 151 147 134 114 91 72 64 140 150 148 136 118 97 78 71 136 148 147 138 123 107 94 90 176 0.060826
 0.070826 sec 0 0 1 0 100 0 99 11 176 169 152 130 111 101 105 121 169 164 150 131 113 104 106 120 160 158 146 130 112 100 98 108 152 154 145 130 111 95 86 89 147 152 146 131 112 91 76 72 143 152 147 134 114 91 72 64 140 151 148 136 118 97 79 71 136 148 147 138 124 107 94 90 176 0.070826
 0.080826 sec 0 0 1 0 100 0 99 10 177 169 152 131 111 101 105 121 170 164 150 131 114 104 106 120 160 158 147 130 113 101 98 108 152 154 146 130 112 95 86 89 147 153 146 132 112 91 76 72 144 152 148 134 114 91 72 64 141 151 148 137 118 97 79 71 137 148 148 139 124 108 94 90 177 0.080826
 0.090826 sec 0 0 1 0 100 0 99 9 177 169 153 131 112 102 105 121 170 165 151 132 114 104 106 120 161 159 147 131 113 101 99 108 152 155 146 131 112 95 86 89 147 153 147 132 112 91 76 72 144 152 148 135 114 92 72 64 141 151 149 137 119 97 79 71 137 149 148 139 124 108 94 91 177 0.090826

Read a Specific Data Value by Index

Providing a single numeric index argument will retrieve the data values at that index.

14 Vehicle Network Toolbox Examples

14-84

data = read(m, 1, m.ChannelNames{1}, 5)

data=1×74 timetable
 Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM PWM_Level PWMFiltered Triangle map1_8_8_uc_measure_0__0_ map1_8_8_uc_measure_0__1_ map1_8_8_uc_measure_0__2_ map1_8_8_uc_measure_0__3_ map1_8_8_uc_measure_0__4_ map1_8_8_uc_measure_0__5_ map1_8_8_uc_measure_0__6_ map1_8_8_uc_measure_0__7_ map1_8_8_uc_measure_1__0_ map1_8_8_uc_measure_1__1_ map1_8_8_uc_measure_1__2_ map1_8_8_uc_measure_1__3_ map1_8_8_uc_measure_1__4_ map1_8_8_uc_measure_1__5_ map1_8_8_uc_measure_1__6_ map1_8_8_uc_measure_1__7_ map1_8_8_uc_measure_2__0_ map1_8_8_uc_measure_2__1_ map1_8_8_uc_measure_2__2_ map1_8_8_uc_measure_2__3_ map1_8_8_uc_measure_2__4_ map1_8_8_uc_measure_2__5_ map1_8_8_uc_measure_2__6_ map1_8_8_uc_measure_2__7_ map1_8_8_uc_measure_3__0_ map1_8_8_uc_measure_3__1_ map1_8_8_uc_measure_3__2_ map1_8_8_uc_measure_3__3_ map1_8_8_uc_measure_3__4_ map1_8_8_uc_measure_3__5_ map1_8_8_uc_measure_3__6_ map1_8_8_uc_measure_3__7_ map1_8_8_uc_measure_4__0_ map1_8_8_uc_measure_4__1_ map1_8_8_uc_measure_4__2_ map1_8_8_uc_measure_4__3_ map1_8_8_uc_measure_4__4_ map1_8_8_uc_measure_4__5_ map1_8_8_uc_measure_4__6_ map1_8_8_uc_measure_4__7_ map1_8_8_uc_measure_5__0_ map1_8_8_uc_measure_5__1_ map1_8_8_uc_measure_5__2_ map1_8_8_uc_measure_5__3_ map1_8_8_uc_measure_5__4_ map1_8_8_uc_measure_5__5_ map1_8_8_uc_measure_5__6_ map1_8_8_uc_measure_5__7_ map1_8_8_uc_measure_6__0_ map1_8_8_uc_measure_6__1_ map1_8_8_uc_measure_6__2_ map1_8_8_uc_measure_6__3_ map1_8_8_uc_measure_6__4_ map1_8_8_uc_measure_6__5_ map1_8_8_uc_measure_6__6_ map1_8_8_uc_measure_6__7_ map1_8_8_uc_measure_7__0_ map1_8_8_uc_measure_7__1_ map1_8_8_uc_measure_7__2_ map1_8_8_uc_measure_7__3_ map1_8_8_uc_measure_7__4_ map1_8_8_uc_measure_7__5_ map1_8_8_uc_measure_7__6_ map1_8_8_uc_measure_7__7_ map1_8_8_uc_measure t
 ____________ __________ __________ __________ __________ ___ _________ ___________ ________ ___________________ ________

 0.040826 sec 0 0 1 0 100 0 99 14 176 168 151 129 109 100 104 121 169 163 148 129 112 103 106 120 159 157 145 128 111 100 98 108 151 152 144 128 110 94 86 90 145 151 145 130 111 90 75 72 142 150 146 133 113 90 72 64 139 150 147 135 117 96 78 70 135 147 146 137 123 106 93 89 176 0.040826

Read a Subset of Data by Time

To read a subset of data by time, duration arguments are provided as input to the read command.

data = read(m, 1, m.ChannelNames{1}, seconds(0.50), seconds(0.60))

data=10×74 timetable
 Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM PWM_Level PWMFiltered Triangle map1_8_8_uc_measure_0__0_ map1_8_8_uc_measure_0__1_ map1_8_8_uc_measure_0__2_ map1_8_8_uc_measure_0__3_ map1_8_8_uc_measure_0__4_ map1_8_8_uc_measure_0__5_ map1_8_8_uc_measure_0__6_ map1_8_8_uc_measure_0__7_ map1_8_8_uc_measure_1__0_ map1_8_8_uc_measure_1__1_ map1_8_8_uc_measure_1__2_ map1_8_8_uc_measure_1__3_ map1_8_8_uc_measure_1__4_ map1_8_8_uc_measure_1__5_ map1_8_8_uc_measure_1__6_ map1_8_8_uc_measure_1__7_ map1_8_8_uc_measure_2__0_ map1_8_8_uc_measure_2__1_ map1_8_8_uc_measure_2__2_ map1_8_8_uc_measure_2__3_ map1_8_8_uc_measure_2__4_ map1_8_8_uc_measure_2__5_ map1_8_8_uc_measure_2__6_ map1_8_8_uc_measure_2__7_ map1_8_8_uc_measure_3__0_ map1_8_8_uc_measure_3__1_ map1_8_8_uc_measure_3__2_ map1_8_8_uc_measure_3__3_ map1_8_8_uc_measure_3__4_ map1_8_8_uc_measure_3__5_ map1_8_8_uc_measure_3__6_ map1_8_8_uc_measure_3__7_ map1_8_8_uc_measure_4__0_ map1_8_8_uc_measure_4__1_ map1_8_8_uc_measure_4__2_ map1_8_8_uc_measure_4__3_ map1_8_8_uc_measure_4__4_ map1_8_8_uc_measure_4__5_ map1_8_8_uc_measure_4__6_ map1_8_8_uc_measure_4__7_ map1_8_8_uc_measure_5__0_ map1_8_8_uc_measure_5__1_ map1_8_8_uc_measure_5__2_ map1_8_8_uc_measure_5__3_ map1_8_8_uc_measure_5__4_ map1_8_8_uc_measure_5__5_ map1_8_8_uc_measure_5__6_ map1_8_8_uc_measure_5__7_ map1_8_8_uc_measure_6__0_ map1_8_8_uc_measure_6__1_ map1_8_8_uc_measure_6__2_ map1_8_8_uc_measure_6__3_ map1_8_8_uc_measure_6__4_ map1_8_8_uc_measure_6__5_ map1_8_8_uc_measure_6__6_ map1_8_8_uc_measure_6__7_ map1_8_8_uc_measure_7__0_ map1_8_8_uc_measure_7__1_ map1_8_8_uc_measure_7__2_ map1_8_8_uc_measure_7__3_ map1_8_8_uc_measure_7__4_ map1_8_8_uc_measure_7__5_ map1_8_8_uc_measure_7__6_ map1_8_8_uc_measure_7__7_ map1_8_8_uc_measure t
 ___________ __________ __________ __________ __________ ___ _________ ___________ ________ ___________________ _______

 0.50083 sec 1 1 1 0 0 0 0 -32 182 178 166 147 128 115 113 123 176 175 164 148 130 116 111 118 169 171 162 147 128 111 101 103 164 168 161 146 126 104 88 84 161 167 162 147 125 100 79 71 159 167 162 149 127 102 80 69 156 165 162 150 131 109 90 82 151 161 160 150 136 119 106 104 182 0.50083
 0.51083 sec 1 1 1 0 0 0 0 -33 182 178 166 148 129 115 113 123 176 175 164 148 130 116 111 118 170 171 162 147 128 111 101 103 165 169 162 147 126 104 88 84 162 168 162 148 126 101 80 71 160 167 163 149 127 102 80 70 157 165 162 150 131 109 90 83 152 162 160 150 136 119 107 104 182 0.51083
 0.52083 sec 1 1 1 0 0 0 0 -34 182 178 166 148 129 116 113 123 176 175 165 149 130 116 111 118 170 171 163 148 129 111 101 103 165 169 162 147 126 105 88 84 162 168 163 148 126 101 80 71 160 167 163 149 128 102 80 70 157 165 162 150 131 109 90 83 152 162 160 151 136 120 107 104 182 0.52083
 0.53083 sec 1 1 1 0 0 0 0 -35 182 178 166 148 129 116 113 123 176 175 165 149 131 116 111 118 170 171 163 148 129 111 101 103 165 169 162 148 127 105 88 84 162 168 163 148 126 101 80 71 160 168 163 149 128 103 80 70 157 166 162 150 132 110 91 83 152 162 160 151 136 120 107 104 182 0.53083
 0.54083 sec 1 1 1 0 0 0 0 -36 182 178 167 149 130 116 113 123 176 175 165 149 131 117 111 118 170 171 163 148 129 111 101 103 165 169 163 148 127 105 88 84 163 169 163 149 127 101 80 71 161 168 163 150 128 103 80 70 158 166 163 151 132 110 91 83 153 162 161 151 137 120 108 105 182 0.54083
 0.55083 sec 1 1 1 0 0 0 0 -37 182 178 167 149 130 116 113 123 176 175 165 150 131 117 111 118 170 172 164 148 129 112 101 103 165 170 163 148 127 105 88 84 163 169 163 149 127 102 80 71 161 168 164 150 129 103 81 70 158 166 163 151 132 110 91 84 153 163 161 152 137 120 108 105 182 0.55083
 0.56083 sec 1 1 1 0 0 0 0 -38 182 179 167 149 130 117 114 123 177 175 166 150 132 117 112 118 170 172 164 149 130 112 101 103 166 170 163 148 128 105 88 84 163 169 164 149 127 102 80 71 161 169 164 150 129 103 81 71 158 167 163 151 132 110 92 84 153 163 161 152 137 121 108 105 182 0.56083
 0.57083 sec 1 1 1 0 0 0 0 -39 182 179 167 150 131 117 114 123 177 176 166 150 132 117 112 118 170 172 164 149 130 112 101 102 166 170 164 149 128 106 89 84 163 169 164 149 127 102 80 71 162 169 164 151 129 104 81 71 159 167 164 152 133 111 92 84 154 163 161 152 137 121 108 106 182 0.57083
 0.58083 sec 1 1 1 0 0 0 0 -40 182 179 167 150 131 117 114 123 177 176 166 150 132 118 112 118 171 172 164 149 130 112 101 102 166 170 164 149 128 106 89 84 164 170 164 150 128 102 80 71 162 169 165 151 129 104 81 71 159 167 164 152 133 111 92 85 154 164 162 152 138 121 109 106 182 0.58083
 0.59083 sec 1 1 1 0 0 0 0 -41 182 179 168 150 131 117 114 123 177 176 166 151 133 118 112 118 171 172 165 150 131 112 101 102 166 171 164 149 128 106 89 84 164 170 165 150 128 103 81 71 162 169 165 151 130 104 82 71 159 167 164 152 133 111 92 85 154 164 162 153 138 121 109 106 182 0.59083

Read a Specific Data Value by Time

Providing a single duration will retrieve the data values at or closest to that timestamp.

data = read(m, 1, m.ChannelNames{1}, seconds(0.55))

data=1×74 timetable
 Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM PWM_Level PWMFiltered Triangle map1_8_8_uc_measure_0__0_ map1_8_8_uc_measure_0__1_ map1_8_8_uc_measure_0__2_ map1_8_8_uc_measure_0__3_ map1_8_8_uc_measure_0__4_ map1_8_8_uc_measure_0__5_ map1_8_8_uc_measure_0__6_ map1_8_8_uc_measure_0__7_ map1_8_8_uc_measure_1__0_ map1_8_8_uc_measure_1__1_ map1_8_8_uc_measure_1__2_ map1_8_8_uc_measure_1__3_ map1_8_8_uc_measure_1__4_ map1_8_8_uc_measure_1__5_ map1_8_8_uc_measure_1__6_ map1_8_8_uc_measure_1__7_ map1_8_8_uc_measure_2__0_ map1_8_8_uc_measure_2__1_ map1_8_8_uc_measure_2__2_ map1_8_8_uc_measure_2__3_ map1_8_8_uc_measure_2__4_ map1_8_8_uc_measure_2__5_ map1_8_8_uc_measure_2__6_ map1_8_8_uc_measure_2__7_ map1_8_8_uc_measure_3__0_ map1_8_8_uc_measure_3__1_ map1_8_8_uc_measure_3__2_ map1_8_8_uc_measure_3__3_ map1_8_8_uc_measure_3__4_ map1_8_8_uc_measure_3__5_ map1_8_8_uc_measure_3__6_ map1_8_8_uc_measure_3__7_ map1_8_8_uc_measure_4__0_ map1_8_8_uc_measure_4__1_ map1_8_8_uc_measure_4__2_ map1_8_8_uc_measure_4__3_ map1_8_8_uc_measure_4__4_ map1_8_8_uc_measure_4__5_ map1_8_8_uc_measure_4__6_ map1_8_8_uc_measure_4__7_ map1_8_8_uc_measure_5__0_ map1_8_8_uc_measure_5__1_ map1_8_8_uc_measure_5__2_ map1_8_8_uc_measure_5__3_ map1_8_8_uc_measure_5__4_ map1_8_8_uc_measure_5__5_ map1_8_8_uc_measure_5__6_ map1_8_8_uc_measure_5__7_ map1_8_8_uc_measure_6__0_ map1_8_8_uc_measure_6__1_ map1_8_8_uc_measure_6__2_ map1_8_8_uc_measure_6__3_ map1_8_8_uc_measure_6__4_ map1_8_8_uc_measure_6__5_ map1_8_8_uc_measure_6__6_ map1_8_8_uc_measure_6__7_ map1_8_8_uc_measure_7__0_ map1_8_8_uc_measure_7__1_ map1_8_8_uc_measure_7__2_ map1_8_8_uc_measure_7__3_ map1_8_8_uc_measure_7__4_ map1_8_8_uc_measure_7__5_ map1_8_8_uc_measure_7__6_ map1_8_8_uc_measure_7__7_ map1_8_8_uc_measure t
 ___________ __________ __________ __________ __________ ___ _________ ___________ ________ ___________________ _______

 0.55083 sec 1 1 1 0 0 0 0 -37 182 178 167 149 130 116 113 123 176 175 165 150 131 117 111 118 170 172 164 148 129 112 101 103 165 170 163 148 127 105 88 84 163 169 163 149 127 102 80 71 161 168 164 150 129 103 81 70 158 166 163 151 132 110 91 84 153 163 161 152 137 120 108 105 182 0.55083

Output Format Defaults to Timetable

The default output format of the read command is a timetable. This option can also be controlled
with the OutputFormat argument.

data = read(m, 1, "Triangle", 1, 10, "OutputFormat", "timetable")

data=10×1 timetable
 Time Triangle
 ______________ ________

 0.00082554 sec 18
 0.010826 sec 17
 0.020826 sec 16
 0.030826 sec 15

 Read Data from MDF-Files

14-85

 0.040826 sec 14
 0.050826 sec 13
 0.060826 sec 12
 0.070826 sec 11
 0.080826 sec 10
 0.090826 sec 9

Output Data as Timeseries

If a timeseries is desired as output, the OutputFormat can be specified to the read command. When
outputting data as a timeseries, only a single channel may be read at a time.

data = read(m, 1, "Triangle", 1, 10, "OutputFormat", "timeseries")

 timeseries

 Common Properties:
 Name: 'Triangle'
 Time: [10x1 double]
 TimeInfo: tsdata.timemetadata
 Data: [10x1 int8]
 DataInfo: tsdata.datametadata

Output Data as Vectors

Output from the read command can also be specified as vectors. When outputting data as a vector,
only a single channel may be read at a time.

[data, time] = read(m, 1, "Triangle", 1, 10, "OutputFormat", "vector")

data = 10x1 int8 column vector

 18
 17
 16
 15
 14
 13
 12
 11
 10
 9

time = 10×1

 0.0008
 0.0108
 0.0208
 0.0308
 0.0408
 0.0508
 0.0608
 0.0708
 0.0808
 0.0908

14 Vehicle Network Toolbox Examples

14-86

Read an Entire Channel Group

To quickly read the data from an entire channel group in a single call, no additional arguments are
specified to the read command.

data = read(m, 1, m.ChannelNames{1});

Close the File

Close access to the MDF-file by clearing its variable from the workspace.

clear m

 Read Data from MDF-Files

14-87

Get Started with MDF Datastore
This example shows you how to use the MDF datastore feature of Vehicle Network Toolbox™ to
quickly and efficiently process a data set spread across a collection of multiple MDF-files. This
workflow is also valuable when there are too much data to fit into available memory.

Access MDF-Files in a Datastore

Find the collection of MDF-files representing logged information from multiple test sequences. Note
that MDF-files to be used by MDF datastore as a set must have the same channel group and channel
content structure.

dir("File*.mf4")

File01.mf4 File02.mf4 File03.mf4 File04.mf4 File05.mf4

Create an MDF Datastore

You create an MDF datastore by selecting a folder location containing a collection of MDF-files. In
this case, target all files in the current working directory.

mds = mdfDatastore(pwd)

mds =
 MDFDatastore with properties:

 DataStore Details
 Files: {
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File01.mf4';
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File02.mf4';
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File03.mf4'
 ... and 2 more
 }
 ChannelGroups:
 ChannelGroupNumber AcquisitionName Comment ... and 4 more columns
 __________________ _______________ _________________

 1 {0x0 char} {'Integer Types'} {0x0 double}
 2 {0x0 char} {'Float Types' } {0x0 double}

 Channels:
 ChannelGroupNumber ChannelName DisplayName ... and 10 more columns
 __________________ ______________________________________ ___________

 1 {'Signed_Int16_LE_Offset_32' } {0x0 char} {0x0 double}
 1 {'Unsigned_UInt32_LE_Master_Offset_0'} {0x0 char} {0x0 double}
 2 {'Float_32_LE_Offset_64' } {0x0 char} {0x0 double}

 ... and 1 more rows

 Options
 SelectedChannelNames: {
 'Signed_Int16_LE_Offset_32';
 'Unsigned_UInt32_LE_Master_Offset_0'
 }
 SelectedChannelGroupNumber: 1

14 Vehicle Network Toolbox Examples

14-88

 ReadSize: 'file'
 Conversion: Numeric

Configure MDF Datastore

Multiple options allow control of what data are read from the MDF-files and how the reads are
performed. In this case, the first channel group is used by default. Note that only one channel group
may be selected by the datastore at a time. You can also specify certain channels within the selected
channel group to read. In this case, all channels are read by default.

mds.SelectedChannelGroupNumber

ans = 1

mds.SelectedChannelNames

ans = 2x1 string
 "Signed_Int16_LE_Offset_32"
 "Unsigned_UInt32_LE_Master_Offset_0"

Preview MDF Datastore

Using the preview function, you can obtain a quick view of the data available in the file set. Preview
always returns up to eight data points from the first file in the datastore.

preview(mds)

ans=8×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 0 sec 0 0
 1 sec 1 1
 2 sec 2 2
 3 sec 3 3
 4 sec 4 4
 5 sec 5 5
 6 sec 6 6
 7 sec 7 7

Read All Data in MDF Datastore

You can use the readall function to read the entire data in a single call. This is an efficient way to
read from many files when the data set fits into available memory. After running readall, the
datastore resets to the beginning of the data set.

data = readall(mds);
data(1:5,:)

ans=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 0 sec 0 0
 1 sec 1 1
 2 sec 2 2

 Get Started with MDF Datastore

14-89

https://www.mathworks.com/help/matlab/ref/matlab.io.datastore.preview.html
https://www.mathworks.com/help/vnt/ug/readall_mdfdatastore.html

 3 sec 3 3
 4 sec 4 4

Read a Subset of Data in MDF Datastore

You can use the read function to obtain a subset of data from the datastore. The size of the subset is
determined by the ReadSize property of the MDF datastore object. By default, data from an entire
file are read in one call. The power of a datastore comes from reading through multiple files
sequentially within the file set. As you read, the datastore automatically bridges from one file to the
next until all data from all files are read.

for ii = 1:3
 data = read(mds);
 whos("data")
 data(1:5,:)
end

 Name Size Bytes Class Attributes

 data 10000x2 141839 timetable

ans=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 0 sec 0 0
 1 sec 1 1
 2 sec 2 2
 3 sec 3 3
 4 sec 4 4

 Name Size Bytes Class Attributes

 data 10000x2 141839 timetable

ans=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 0 sec 0 0
 1 sec 1 1
 2 sec 2 2
 3 sec 3 3
 4 sec 4 4

 Name Size Bytes Class Attributes

 data 10000x2 141839 timetable

ans=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 0 sec 0 0
 1 sec 1 1
 2 sec 2 2

14 Vehicle Network Toolbox Examples

14-90

https://www.mathworks.com/help/vnt/ug/read_mdfdatastore.html

 3 sec 3 3
 4 sec 4 4

Reset MDF Datastore

At any time, you can call the reset function to start over at the beginning of the data set.

reset(mds)

Configure Number of Records to Read from MDF Datastore

You can use the ReadSize property to specify how much data to read on each call. ReadSize can be
specified as a numeric value to read a fixed number of data points. ReadSize lets you control how
much data is loaded into memory when you have a data set larger than available memory. It is
recommended to use custom read sizes that are small enough to fit in memory, but still as large as
possible to reduce processing overhead and improve performance.

mds.ReadSize = 5

mds =
 MDFDatastore with properties:

 DataStore Details
 Files: {
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File01.mf4';
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File02.mf4';
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File03.mf4'
 ... and 2 more
 }
 ChannelGroups:
 ChannelGroupNumber AcquisitionName Comment ... and 4 more columns
 __________________ _______________ _________________

 1 {0x0 char} {'Integer Types'} {0x0 double}
 2 {0x0 char} {'Float Types' } {0x0 double}

 Channels:
 ChannelGroupNumber ChannelName DisplayName ... and 10 more columns
 __________________ ______________________________________ ___________

 1 {'Signed_Int16_LE_Offset_32' } {0x0 char} {0x0 double}
 1 {'Unsigned_UInt32_LE_Master_Offset_0'} {0x0 char} {0x0 double}
 2 {'Float_32_LE_Offset_64' } {0x0 char} {0x0 double}

 ... and 1 more rows

 Options
 SelectedChannelNames: {
 'Signed_Int16_LE_Offset_32';
 'Unsigned_UInt32_LE_Master_Offset_0'
 }
 SelectedChannelGroupNumber: 1
 ReadSize: 5
 Conversion: Numeric

 Get Started with MDF Datastore

14-91

https://www.mathworks.com/help/vnt/ug/reset_mdfdatastore.html

for ii = 1:3
 data = read(mds)
end

data=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 0 sec 0 0
 1 sec 1 1
 2 sec 2 2
 3 sec 3 3
 4 sec 4 4

data=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 5 sec 5 5
 6 sec 6 6
 7 sec 7 7
 8 sec 8 8
 9 sec 9 9

data=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 ______ _________________________ __________________________________

 10 sec 10 10
 11 sec 11 11
 12 sec 12 12
 13 sec 13 13
 14 sec 14 14

Configure a Time Range to Read from MDF Datastore

You can also specify ReadSize as a duration to read data points by elapsed time. Note that when the
read type is changed, the datastore resets to the beginning of the data set.

mds.ReadSize = seconds(5)

mds =
 MDFDatastore with properties:

 DataStore Details
 Files: {
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File01.mf4';
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File02.mf4';
 ' ...\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex10761765\File03.mf4'
 ... and 2 more
 }
 ChannelGroups:
 ChannelGroupNumber AcquisitionName Comment ... and 4 more columns
 __________________ _______________ _________________

 1 {0x0 char} {'Integer Types'} {0x0 double}

14 Vehicle Network Toolbox Examples

14-92

 2 {0x0 char} {'Float Types' } {0x0 double}

 Channels:
 ChannelGroupNumber ChannelName DisplayName ... and 10 more columns
 __________________ ______________________________________ ___________

 1 {'Signed_Int16_LE_Offset_32' } {0x0 char} {0x0 double}
 1 {'Unsigned_UInt32_LE_Master_Offset_0'} {0x0 char} {0x0 double}
 2 {'Float_32_LE_Offset_64' } {0x0 char} {0x0 double}

 ... and 1 more rows

 Options
 SelectedChannelNames: {
 'Signed_Int16_LE_Offset_32';
 'Unsigned_UInt32_LE_Master_Offset_0'
 }
 SelectedChannelGroupNumber: 1
 ReadSize: 5 sec
 Conversion: Numeric

for ii = 1:3
 data = read(mds)
end

data=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 0 sec 0 0
 1 sec 1 1
 2 sec 2 2
 3 sec 3 3
 4 sec 4 4

data=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 _____ _________________________ __________________________________

 5 sec 5 5
 6 sec 6 6
 7 sec 7 7
 8 sec 8 8
 9 sec 9 9

data=5×2 timetable
 Time Signed_Int16_LE_Offset_32 Unsigned_UInt32_LE_Master_Offset_0
 ______ _________________________ __________________________________

 10 sec 10 10
 11 sec 11 11
 12 sec 12 12
 13 sec 13 13
 14 sec 14 14

 Get Started with MDF Datastore

14-93

Close MDF-Files

Close access to the MDF-files by clearing the MDF datastore variable from workspace.

clear mds

14 Vehicle Network Toolbox Examples

14-94

CAN Connectivity in a Robotics Application
This example shows you how to use Vehicle Network Toolbox™ to implement a Controller Area
Network (CAN) in a remote manipulator arm using Simulink®. The CAN messages used are defined
in the CAN database file, canDatabaseFor6DofRoboticArm.dbc.

Vehicle Network Toolbox provides Simulink blocks for transmitting and receiving live messages via
Simulink models over Controller Area Networks (CAN). This example uses the CAN Configuration,
CAN Pack, CAN Transmit, CAN Receive, and CAN Unpack blocks to perform data transfer over a
CAN bus.

MathWorks virtual CAN channels are used for this example. Alternatively, you can connect your
models to other supported hardware.

Model Description

 CAN Connectivity in a Robotics Application

14-95

The model consists of the following subsystems: Manipulator arm system, Inverse kinematics and
controller, Joint CAN transmit interface, Joint CAN receive interface, Inverse kinematics and
controller CAN transmit interface, and Inverse kinematics and controller CAN receive interface. Each
joint and the inverse kinematics and controller subsystem constitute a node in the CAN bus.

The user inputs the position coordinates (X, Y and Z in metres) and the orientation (roll, pitch and
yaw angles in degrees, in body-3 2-3-1 sequence) of the end effector. The inverse kinematics and
controller subsystem receives feedback from the joint angle sensors that are sent via the CAN bus,
and sends appropriate commands to each joint motor via the CAN bus to drive the position anf the
orientation of the end effector to the user-input values.

The remote manipulator arm is assumed to be attached to a spacecraft in orbit. As a result, gravity is
neglected.

Manipulator Arm System

This subsystem consists of the rigid-body model of the remote manipulator arm, modeled using
Simscape Multibody 2G. The arm has six joints. Each joint is actuated by a DC motor with a gearbox,
and are modeled using Simscape Foundational Library. Each joint also has a joint angle sensor. The
sensor data in sent into the CAN bus. Each motor is powered by a controlled voltage source. The
voltage sources receive messages from the CAN bus and apply the DC voltage across their terminals
corresponding to the information in the messages.

14 Vehicle Network Toolbox Examples

14-96

Inverse Kinematics and Controller

The Inverse kinematics and controller subsystem further implements the inverse kinematics and the
control algorithm. The inverse kinematics computes the desired joint angles from the desired position
(X, Y and Z) and orientation (roll, pitch and yaw angles) that are input by the user. The discrete PID
controllers utilize the joint angle sensor values that are read from the CAN bus to determine the DC
voltage that should be applied to each motor to drive the joint angles to the desired values. The DC
voltage values are sent as messages in the CAN bus.

Joint CAN Transmit Interface

This subsystem consists of the VNT blocks that are necessary to transmit the joint angle values from
the corresponding sensors into the CAN bus.

Joint CAN Receive Interface

This subsystem consists of the VNT blocks that are necessary to receive and unpack the messages
from the CAN bus that contain information about the DC voltages that need to be applied to the
controlled voltage sources corresponding to each motor.

Inverse Kinematics and Controller CAN Transmit Interface

This subsystem consists of the VNT blocks that are necessary to transmit the motor signals (DC
voltages that need to be applied across the controlled voltage sources) calculated by the Inverse
Kinematics and Controller subsystem into the CAN bus.

 CAN Connectivity in a Robotics Application

14-97

Inverse Kinematics and Controller CAN Receive Interface

This subsystem consists of the VNT blocks that are necessary to receive the messages from the CAN
bus that contain information about the joint angles that are sent by the joint angle sensors.

14 Vehicle Network Toolbox Examples

14-98

CAN Connectivity in an Automotive Application
This example uses Vehicle Network Toolbox to implement a distributed Electronic Control Unit (ECU)
network on CAN for an automobile using Simulink®. The CAN messages used are defined in the CAN
database file, canConnectivityForVehicle.dbc.

Vehicle Network Toolbox™ provides Simulink blocks for transmitting and receiving live messages via
Simulink models over Controller Area Networks (CAN). This example uses the CAN Configuration,
CAN Pack, CAN Transmit, CAN Receive and CAN Unpack blocks to perform data transfer over a CAN
bus.

MathWorks virtual CAN channels were used for this example. You can however connect your models
to other supported hardware.

Model Description

The model consists of the following subsystems: Vehicle dynamics model, Sensors and actuators, Turn
signal, Dashboard, brake light and Speed controller. The Vehicle dynamics model represents the
automobile (the environment), and the other subsystems represent the various nodes on the CAN bus.

 CAN Connectivity in an Automotive Application

14-99

Vehicle Dynamics Model

This subsystem defines the equations of motion of the automobile. The inputs are the throttle and
brake actuator positions. The outputs are the engine RPM and vehicle speed, that are multiplexed
into a single signal.

Sensors and Actuators

This subsystem consists of the throttle and brake actuators, and the RPM and vehicle speed sensors.
The actuators receive the throttle and the brake commands via the CAN bus. The actuator outputs
(control) are fed to the vehicle dynamics model.

The brake actuator also sends a signal that informs whether or not the brakes are actuated. This
signal is sampled at 100 Hz and transmitted into the CAN bus. The engine RPM and vehicle speed
signals from the vehicle dynamics model that are input to this subsystem and are also sampled at 100
Hz and transmitted into the CAN bus.

Dashboard

The dashboard is the interface between the vehicle and the driver. The commanded speed can be set
by the user using the slider (Speed command:Value). The turn signal can be operated using the rotary
switch (Turn signal:Value).

The speed command and turn signal status signals are transmitted into the CAN bus. The sampled
vehicle speed and engine RPM are read from the CAN bus and displayed on the speedometer and the
tachometer respectively.

Speed Controller

The speed controller sends commands to the actuators to drive the vehicle speed to the commanded
value. The vehicle speed and the commanded speed are read from the CAN bus. The throttle and

14 Vehicle Network Toolbox Examples

14-100

brake commands are calculated by the corresponding discrete Proportional - Integral controllers. The
actuator commands are transmitted into the CAN bus.

Brake Light

The Brake light subsystem receives the brake actuator status signal from the CAN bus and
appropriately operates the brake lights. Whenever the brakes are actuated, the brake lights are
turned on.

Turn Signal

The turn signal subsystem receives the turn signal status message from the CAN bus and
appropriately activates the turn signals. The left turn signal light blinks periodically when the rotary
switch is set to the "Left" position, and the right turn signal light blinks periodically when the rotary
switch is set to the "Right" position.

 CAN Connectivity in an Automotive Application

14-101

Get Started with CAN FD Communication in Simulink
This example shows how to use MathWorks virtual CAN FD channels to set up transmission and
reception of CAN FD messages in Simulink. The virtual channels are connected in a loopback
configuration.

Vehicle Network Toolbox provides Simulink blocks for transmitting and receiving live messages via
Simulink models over networks utilizing the Controller Area Network Flexible Data (CAN FD) format.
This example uses the CAN FD Configuration, CAN FD Pack, CAN FD Transmit, CAN FD Receive and
CAN FD Unpack blocks to perform data transfer over a CAN FD bus. These blocks operate similarly
to the CAN blocks, but are intended for use only on networks or devices that support the CAN FD
protocol.

Transmit and Receive CAN FD Messages

Create a model to transmit and receive a CAN FD message carrying a sine wave data signal. The
model transmits a single message per timestep. A DBC-file defines the message and signal used in the
model.

Process CAN FD Messages

The CAN FD Receive block generates a function-call trigger if it receives a new message at any
particular timestep. This indicates to other blocks in the model that a message is available for
decoding activities. Signal decoding and processing is performed inside the Function-Call Subsystem
(Simulink).

14 Vehicle Network Toolbox Examples

14-102

Visualize Signal Data

Plot the sine wave values before and after transmission. The X-axis corresponds to the simulation
timestep and the Y-axis corresponds to the value of the signal. Note that the phase shift between the
two plots represents the propagation delay as the signal travels across the network.

 Get Started with CAN FD Communication in Simulink

14-103

Extend the Example

This example uses MathWorks virtual CAN FD channels. You can connect your models to other
supported hardware. You can also modify the model to transmit at periodic rates.

14 Vehicle Network Toolbox Examples

14-104

Forward Collision Warning Application with CAN FD and TCP/IP
This example shows how to execute a forward collision warning (FCW) application with sensor and
vision data replayed live via CAN FD and TCP/IP protocols. Recorded data from a sensor suite
mounted on a test vehicle are replayed live as if they were coming through the network interfaces of
the vehicle. Vehicle Network Toolbox™ and Instrument Control Toolbox™ provide these interfaces.
This setup is used to test an FCW system developed using features from Automated Driving
Toolbox™. For assistance with the design and development of actual FCW algorithms, refer to the
example “Forward Collision Warning Using Sensor Fusion” (Automated Driving Toolbox).

System Configuration

This example uses virtual CAN FD channels from Vector. These virtual device channels are available
with the installation of the Vector Driver Setup package from www.vector.com.

This example has two primary components:

1 Transmitter: Sends the sensor and vision data via CAN FD and TCP/IP. This portion represents a
sample vehicle environment. It replays prerecorded data as if it were a live vehicle.

2 Receiver: Collects all the data and executes the FCW algorithm and visualizations. This portion
represents the application component.

To execute the example, the transmitter and receiver portions run from separate sessions of
MATLAB®. This replicates the data source existing outside the MATLAB session serving as the
development tool. Furthermore, this example allows you to run the FCW application in multiple
execution modes (interpreted and MEX) with different performance characteristics.

 Forward Collision Warning Application with CAN FD and TCP/IP

14-105

https://www.vector.com

Generate Data

The transmitting application executes via the helperStartTransmitter function. It launches a
separate MATLAB process to run outside of the current MATLAB session. The transmitter initializes
itself and begins sending sensor and vision data automatically. To run the transmitter, use the system
command.

system('matlab -nodesktop -nosplash -r helperStartTransmitter &')

Execute Forward Collision Warning System (Interpreted Mode)

To open the receiving FCW application, execute the helperStartReceiver function. You can click
START to begin data reception, processing, and visualization. You can explore the
helperStartReceiver function to see how the Vehicle Network Toolbox CAN FD functions,
Instrument Control Toolbox TCP/IP functions, and Automated Driving Toolbox capabilities are used in
concert with one another.

helperStartReceiver('interpreted')

14 Vehicle Network Toolbox Examples

14-106

Review Results

When ready, stop the transmitter application using the close window button on its command window.
Click STOP on the receiving FCW application, and then close its window as well.

When the receiving FCW application is stopped, a plot appears detailing performance characteristics
of the application. It shows time spent receiving data, processing the FCW algorithm, and performing
visualizations. Benchmarking is useful to show parts of the setup that need performance
improvement. It is clear that a significant portion of time is spent executing the FCW algorithm. In
the next section, explore code generation as a strategy to improve performance.

 Forward Collision Warning Application with CAN FD and TCP/IP

14-107

Execute Forward Collision Warning System (MEX Mode)

If faster performance is a requirement in your workflow, you can use MATLAB Coder™ to generate
and compile MATLAB code as MEX code. To build this example as MEX code, use the
helperGenerateCode function. The build will compile the FCW application into a MEX function
directly callable within MATLAB.

helperGenerateCode('mex')

Restart the transmitter application.

system('matlab -nodesktop -nosplash -r helperStartTransmitter &')

The receiving FCW application can also be restarted. This time with an input argument to use the
MEX compiled code built in the prior step.

helperStartReceiver('mex')

When ready, stop and close the transmitter and receiving FCW application. Comparing the time plot
for MEX execution to the interpreted mode plot, you can see the performance improvement for the
FCW algorithm.

14 Vehicle Network Toolbox Examples

14-108

Use Physical Hardware and Multiple Computers

The example uses a single computer to simulate the entire system with virtual connectivity. As such,
its performance is meant as an approximation. You can also execute this example using two
computers (one as transmitter, one as receiver). This would represent more of a real live data
scenario. To achieve this, you can make simple modifications to the example code.

Changing the CAN FD communication from virtual to physical devices requires editing the
transmission and reception code to invoke canChannel using a hardware device instead of the
virtual channels. You may also need to modify the call to configBusSpeed depending on the
capabilities of the hardware. These calls are found in the helperStartReceiver and
dataTransmitter functions of the example.

Changing TCP/IP communication for multiple computers requires adjusting the TCP/IP address of the
transmitter from local host (127.0.0.1) to a static value (192.168.1.2 recommended). This address is
set first on the host transmitting computer. After, modify the tcpipAddr variable in the
helperStartReceiver function to match.

Once configured and connected physically, you can run the transmitter application on one computer
and the FCW application on the other.

 Forward Collision Warning Application with CAN FD and TCP/IP

14-109

Data Analytics Application with Many MDF-Files
This example shows you how to investigate vehicle battery power during discharge mode across
various drive cycles. The data for this analysis are contained in a set of vehicle log files in MDF
format. For this example, we need to build up a mechanism that can "detect" when the vehicle battery
is in a given mode. What we are really doing is building a detector to determine when a signal of
interest (battery power in this case) meets specific criteria. When the criteria is met, we will call that
an "event". Each event will be subsequently "qualified" by imposing time bounds. That is to say an
event is "qualified" if it persists for at least 5 seconds (such a qualification step can help limit noise
and remove transients). The thresholds shown in this example are illustrative only.

Set Data Source Location

Define the location of the file set to analyze.

dataDir = '*.dat';

Obtain File Set Information

Get the names of all the MDF-files to analyze into a single cell array.

fileList = dir(dataDir);
fileName = {fileList(:).name}';
fileDir = {fileList(:).folder}';
fullFilePath = fullfile(fileDir, fileName)

fullFilePath = 5x1 cell
 {'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex86857001\ADAC.dat' }
 {'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex86857001\ECE.dat' }
 {'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex86857001\HWFET.dat'}
 {'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex86857001\SC03.dat' }
 {'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex86857001\US06.dat' }

Pre-allocate the Output Data Cell Array

Use a cell array to capture a collection of mini-tables which represent the event data of interest for
each individual MDF-file.

numFiles = size(fullFilePath, 1);
eventSet = cell(numFiles, 1)

eventSet=5×1 cell array
 {0x0 double}
 {0x0 double}
 {0x0 double}
 {0x0 double}
 {0x0 double}

Define Event Detection and Channel Information Criteria

chName = 'Power'; % Name of the signal of interest in the MDF-files
thdValue = [5, 55]; % Threshold in KW
thdDuration = seconds(5); % Threshold for event qualification

14 Vehicle Network Toolbox Examples

14-110

Loop Through Each MDF-File and Apply the Event Detector Function

eventSet is a cell array which contains a summary table for each file that was analyzed. You can
think of this cell array of tables as a set of mini-tables, all with the same format but the contents of
each mini-table correspond to the individual MDF-files.

In this example, the event detector not only reports the event start and end times but also some
descriptive statistics about the event itself. This kind of aggregation and reporting can be useful for
discovery and troubleshooting activities. To understand the MDF-file interfacing and data handling in
more detail, open and explore the processMDF function from this example.

Note that the data processing is written such that each MDF-file is parsed atomically and returns into
its own index of the resulting cell array. This allows the processing function to leverage parallel
computing capability with parfor. parfor and standard for are interchangeable in terms of
outputs, but result in varying processing time needed to complete the analysis. To experiment with
parallel computing, simply change the for call below to parfor and run this example.

for i = 1:numFiles
 eventSet{i} = processMDF(fullFilePath{i}, chName, thdValue, thdDuration);
end
eventSet{1}

ans=20×8 table
 FileName EventNumber EventDuration EventStart EventStop MeanPower_KW MaxPower_KW MinPower_KW
 ________ ___________ _____________ __________ __________ ____________ ___________ ___________

 ADAC.dat 2 00:01:22 19.345 sec 101.79 sec 28.456 53.5 5
 ADAC.dat 3 00:00:08 107.82 sec 116.36 sec 21.295 53.5 5.09
 ADAC.dat 5 00:00:55 123.8 sec 179.67 sec 28.642 37.2 5.01
 ADAC.dat 6 00:00:10 189.83 sec 200.36 sec 11.192 54.4 5.1
 ADAC.dat 8 00:00:40 212.4 sec 252.79 sec 28.539 37.4 5.01
 ADAC.dat 9 00:00:08 258.76 sec 267.37 sec 21.289 53.7 5.02
 ADAC.dat 11 00:00:44 274.81 sec 319.79 sec 28.554 37.2 5.08
 ADAC.dat 12 00:00:08 325.75 sec 334.37 sec 21.279 53.7 5.05
 ADAC.dat 14 00:00:44 341.81 sec 386.79 sec 28.554 37.2 5.08
 ADAC.dat 15 00:00:08 392.75 sec 401.37 sec 21.278 53.7 5.04
 ADAC.dat 17 00:00:44 408.81 sec 453.67 sec 28.579 37.2 5.08
 ADAC.dat 18 00:00:07 463.77 sec 471.37 sec 11.895 54.676 5.04
 ADAC.dat 20 00:00:40 483.44 sec 523.79 sec 28.544 37.363 5.0682
 ADAC.dat 21 00:00:08 529.75 sec 538.37 sec 21.279 53.7 5.05
 ADAC.dat 23 00:00:44 545.81 sec 590.79 sec 28.553 37.2 5.08
 ADAC.dat 24 00:00:08 596.75 sec 605.37 sec 21.279 53.7 5.05
 ⋮

Concatenate Results

Combine the contents of the cell array eventSet into a single table. We can now use the table
eventSummary for subsequent analysis. The head function is used to display the first 5 rows of the
table eventSummary.

eventSummary = vertcat(eventSet{:});
disp(head(eventSummary, 5))

 FileName EventNumber EventDuration EventStart EventStop MeanPower_KW MaxPower_KW MinPower_KW
 ________ ___________ _____________ __________ __________ ____________ ___________ ___________

 Data Analytics Application with Many MDF-Files

14-111

 ADAC.dat 2 00:01:22 19.345 sec 101.79 sec 28.456 53.5 5
 ADAC.dat 3 00:00:08 107.82 sec 116.36 sec 21.295 53.5 5.09
 ADAC.dat 5 00:00:55 123.8 sec 179.67 sec 28.642 37.2 5.01
 ADAC.dat 6 00:00:10 189.83 sec 200.36 sec 11.192 54.4 5.1
 ADAC.dat 8 00:00:40 212.4 sec 252.79 sec 28.539 37.4 5.01

Visualize Summary Results to Determine Next Steps

Look at an overview of the event durations.

histogram(eventSummary.EventDuration)
grid on
title 'Distribution of Event Duration'
xlabel 'Event Duration (minutes)'
ylabel 'Frequency'

Now look at Mean Power vs. Event Duration.

scatter(eventSummary.MeanPower_KW, minutes(eventSummary.EventDuration))
grid on
xlabel 'MeanPower(KW)'
ylabel 'Event Duration (minutes)'
title 'Mean Power vs. Event Duration'

14 Vehicle Network Toolbox Examples

14-112

Deep Dive an Event of Interest

Inspect the event that lasted for more than 4 minutes. First, create a mask to find the case of interest.
msk is a logical index that shows which rows of the table eventSummary meet the specified criteria.

msk = eventSummary.EventDuration > minutes(4);

Pull out the rows of the table eventSummary that meet the criteria specified and display the results.

eventOfInterest = eventSummary(msk, :);
disp(eventOfInterest)

 FileName EventNumber EventDuration EventStart EventStop MeanPower_KW MaxPower_KW MinPower_KW
 _________ ___________ _____________ __________ __________ ____________ ___________ ___________

 HWFET.dat 18 00:04:43 297.22 sec 580.37 sec 12.275 30.2 5.0024

Visualize This Event in the Context of the Entire Drive Cycle

We need the full file path and file name to read the data from the MDF-file. The table
eventOfInterest has the filename because we kept track of that. It does not have the full file path
to that file. To get this information we will apply a bit of set theory to our original list of filenames and
paths. First, find the full file path of the file of interest.

fileMsk = find(ismember(fileName, eventOfInterest.FileName))

fileMsk = 3

 Data Analytics Application with Many MDF-Files

14-113

Create an MDF object to read data from the MDF-file.

mdfObj = mdf(fullFilePath{fileMsk})

mdfObj =
 MDF with properties:

 File Details
 Name: 'HWFET.dat'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex86857001\HWFET.dat'
 Author: ''
 Department: ''
 Project: ''
 Subject: ''
 Comment: ''
 Version: '3.00'
 DataSize: 3167040
 InitialTimestamp: 2017-08-09 12:20:03.000000000

 Creator Details
 ProgramIdentifier: 'MDA v7.1'
 Creator: [1x1 struct]

 File Contents
 Attachment: [0x1 struct]
 ChannelNames: {{5x1 cell}}
 ChannelGroup: [1x1 struct]

 Options
 Conversion: Numeric

Identify the channel with channelList and read all the data from this file.

chInfo = channelList(mdfObj, chName)

chInfo=1×9 table
 ChannelName ChannelGroupNumber ChannelGroupNumSamples ChannelGroupAcquisitionName ChannelGroupComment ChannelDisplayName ChannelUnit ChannelComment ChannelDescription
 ___________ __________________ ______________________ ___________________________ ___________________ __________________ ___________ ______________ __________________

 "Power" 1 79176 <undefined> cg comment "" <undefined> <undefined> ""

data = read(mdfObj, chInfo)

data = 1x1 cell array
 {79176x1 timetable}

Note that reading with the output of channelList returns a cell array of results.

data{1}(1:10,:)

ans=10×1 timetable
 Time Power
 _____________ _________

 0.0048987 sec 0
 0.0088729 sec 0

14 Vehicle Network Toolbox Examples

14-114

 0.01 sec 0
 0.013223 sec 0
 0.016446 sec 0
 0.019668 sec 0
 0.02 sec 0
 0.021658 sec -2.4e-28
 0.023878 sec -3.42e-15
 0.026098 sec -1.04e-14

Visualize Using a Custom Plotting Function

Custom plotting functions are useful for encapsulation and reuse. Visualize the event in the context of
the entire drive cycle. To understand how the visualization was created, open and explore the
eventPlotter function from this example.

eventPlotter(data{1}, eventOfInterest)

Close the File

Close access to the MDF-file by clearing its variable from the workspace.

clear mdfObj

 Data Analytics Application with Many MDF-Files

14-115

Log and Replay CAN FD Messages
This example shows you how to log and replay CAN FD messages using MathWorks virtual CAN FD
channels in Simulink. You can update this model to connect to supported hardware on your system.

Load the saved CAN FD message from sourceFDMsgs.mat file from the examples folder. The file
contains CAN FD messages representing a 90 second drive cycle around a test track.

Convert these messages to a format compatible with the CAN FD Replay block and save it to a
separate file.

 Name Size Bytes Class Attributes

 canFDMsgTimetable 100000x12 45411725 timetable
 canFDMsgs 1x1 8401848 struct

CAN FD Replay Model

This model contains:

• A CAN FD Replay block that transmits to MathWorks Virtual Channel 1.
• A CAN FD Receive block that receives the messages on a CAN FD network, through MathWorks

Virtual Channel 2.

The CAN FD Receive block is configured to block all extended IDs and allow only the WheelSpeed
message with the standard ID 1200 to pass.

14 Vehicle Network Toolbox Examples

14-116

The Wheel Speeds subsystem unpacks the wheel speed information from the received CAN FD
messages and plots them to a scope. The subsystem also logs the messages to a file.

Visualize Wheel Speed Information

The plot shows the wheel speed for all wheels for the duration of the test drive.

 Log and Replay CAN FD Messages

14-117

Load the Logged Message File

The CAN FD Log block creates a unique file each time you run the model. Use dir in the MATLAB
Command Window to find the latest log file.

WheelSpeeds_2018-Apr-30_132033.mat

 Name Size Bytes Class Attributes

 canFDMsgTimetable 100000x12 45411725 timetable
 canFDMsgs 1x1 8401848 struct
 outFDMsgs 1x1 841848 struct

Convert Logged Messages

Use canFDMessageTimetable to convert messages logged during the simulation to a timetable that
you can use in the command window.

14 Vehicle Network Toolbox Examples

14-118

To access message signals directly, use the appropriate database file in the conversion along with
canSignalTimetable.

ans =

 15x12 timetable

 Time ID Extended Name ProtocolMode Data Length DLC Signals Error Remote BRS ESI
 __________ ____ ________ _______________ ____________ __________________________________ ______ ___ ____________ _____ ______ _____ _____

 75.393 sec 576 false {0x0 char } {'CAN FD'} {[79 136 166 71]} 4 4 {0x0 struct} false false true false
 75.397 sec 1200 false {'WheelSpeeds'} {'CAN FD'} {[54 171 55 39 54 180 55 39]} 8 8 {1x1 struct} false false true false
 75.398 sec 128 false {0x0 char } {'CAN FD'} {[41 89 117 48 1 83 218]} 7 7 {0x0 struct} false false true false
 75.398 sec 133 false {0x0 char } {'CAN FD'} {[0 102 0 0 0 0 0 0]} 8 8 {0x0 struct} false false true false
 75.398 sec 144 false {0x0 char } {'CAN FD'} {[167 129 247 8 200 145 24 93]} 8 8 {0x0 struct} false false true false
 75.398 sec 528 false {0x0 char } {'CAN FD'} {[255 254 60 4 64 0 0]} 7 7 {0x0 struct} false false true false
 75.399 sec 529 false {0x0 char } {'CAN FD'} {[255 255 255 255 255 255 255 60]} 8 8 {0x0 struct} false false true false
 75.399 sec 1201 false {0x0 char } {'CAN FD'} {[15 155 16 23 15 164 16 23]} 8 8 {0x0 struct} false false true false
 75.399 sec 512 false {0x0 char } {'CAN FD'} {[2 125 1 213 2 129 128 255]} 8 8 {0x0 struct} false false true false
 75.399 sec 513 false {0x0 char } {'CAN FD'} {[31 179 255 255 54 222 38 255]} 8 8 {0x0 struct} false false true false
 75.399 sec 533 false {0x0 char } {'CAN FD'} {[2 168 2 168 2 42 35 0]} 8 8 {0x0 struct} false false true false
 75.4 sec 1312 false {0x0 char } {'CAN FD'} {[250 0 200 50 0]} 5 5 {0x0 struct} false false true false
 75.405 sec 1200 false {'WheelSpeeds'} {'CAN FD'} {[54 173 55 41 54 180 55 40]} 8 8 {1x1 struct} false false true false
 75.406 sec 1201 false {0x0 char } {'CAN FD'} {[15 157 16 25 15 164 16 24]} 8 8 {0x0 struct} false false true false
 75.408 sec 1296 false {0x0 char } {'CAN FD'} {[39 0 1]} 3 3 {0x0 struct} false false true false

ans =

 15x4 timetable

 Time RR_WSpeed RF_WSpeed LR_WSpeed LF_WSpeed
 __________ _________ _________ _________ _________

 75.397 sec 41.19 40.04 41.19 39.95
 75.405 sec 41.2 40.04 41.21 39.97
 75.414 sec 41.22 40.05 41.26 40.03
 75.424 sec 41.25 40.13 41.3 40.05
 75.433 sec 41.19 40.14 41.28 40.08
 75.441 sec 41.17 40.18 41.31 40.14
 75.45 sec 41.31 40.27 41.31 40.17
 75.458 sec 41.37 40.25 41.31 40.19
 75.466 sec 41.39 40.22 41.3 40.19
 75.475 sec 41.39 40.25 41.3 40.2
 75.483 sec 41.37 40.26 41.33 40.21
 75.492 sec 41.44 40.35 41.33 40.19
 75.501 sec 41.51 40.44 41.36 40.22
 75.509 sec 41.58 40.47 41.44 40.29
 75.517 sec 41.63 40.45 41.44 40.31

MathWorks CAN FD virtual channels were used for this example. You can however connect your
models to other supported hardware.

 Log and Replay CAN FD Messages

14-119

Map Channels from MDF-Files to Simulink Model Input Ports
This example shows you how to programmatically map channels from MDF-files and consume their
data via input ports of a Simulink model. It performs the gathering of input port names of a Simulink
model and correlates them to the content of a given MDF-file. A linkage between them is then created
which consumes channel data sourced from the MDF-file when the model runs.

Acquire Model Details

Define the example model name and open it.

mdlName = "ModelForMDFInput";
open_system(mdlName);

Use the createInputDataset function to obtain overall information about the model and its inputs.

dsObj = createInputDataset(mdlName)

dsObj =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 ________ _________
 1 [1x1 timeseries] triangle ''
 2 [1x1 struct] busInput ''

14 Vehicle Network Toolbox Examples

14-120

https://www.mathworks.com/help/simulink/slref/createinputdataset.html

 - Use braces { } to access, modify, or add elements using index.

Obtain Model Input Port Names

This model has both a bus and an individual input port. The helperGetMdlInputNames function
demonstrates how to get the name of all the model inputs regardless of how they are defined in the
model.

mdlInputNames = helperGetMdlInputNames(mdlName)

mdlInputNames = 4x1 string
 "triangle"
 "pwm"
 "pwm_level"
 "pwm_filtered"

Investigate the MDF-File

Now that you have the input port names of the model, you can see what channels exist in the MDF-
file so you can attempt to match them. The channelList function allows quick access to the
available channels present in an MDF-file.

mdfName = "CANape.MF4";
mdfObj = mdf(mdfName);
mdfChannelInfo = channelList(mdfObj)

mdfChannelInfo=120×9 table
 ChannelName ChannelGroupNumber ChannelGroupNumSamples ChannelGroupAcquisitionName ChannelGroupComment ChannelDisplayName ChannelUnit ChannelComment ChannelDescription
 ___________________________ __________________ ______________________ ___________________________ ___________________ __________________ ___________ ___ ___

 "ampl" 2 199 100ms 100ms "" <undefined> Amplitude of channel 1-3 "Amplitude of channel 1-3"
 "channel1" 2 199 100ms 100ms "" <undefined> FLOAT demo signal (sine wave) "FLOAT demo signal (sine wave)"
 "Counter_B4" 1 1993 10 ms 10 ms "" <undefined> Single bit demo signal (bit from a byte shifting) "Single bit demo signal (bit from a byte shifting)"
 "Counter_B5" 1 1993 10 ms 10 ms "" <undefined> Single bit demo signal (bit from a byte shifting) "Single bit demo signal (bit from a byte shifting)"
 "Counter_B6" 1 1993 10 ms 10 ms "" <undefined> Single bit demo signal (bit from a byte shifting) "Single bit demo signal (bit from a byte shifting)"
 "Counter_B7" 1 1993 10 ms 10 ms "" <undefined> Single bit demo signal (bit from a byte shifting) "Single bit demo signal (bit from a byte shifting)"
 "map1_8_8_uc_measure" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[0][0]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[0][1]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[0][2]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[0][3]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[0][4]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[0][5]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[0][6]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[0][7]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 "map1_8_8_uc_measure[1][0]" 1 1993 10 ms 10 ms "" <undefined> 8*8 fixed axis, permanently morphing "8*8 fixed axis, permanently morphing"
 ⋮

Construct a Table to Manage Items of Interest

Use a table to map the model input ports to MDF channels.

channelTable = table();
channelTable.PortNames = mdlInputNames;
n = size(channelTable.PortNames,1);

 Map Channels from MDF-Files to Simulink Model Input Ports

14-121

https://www.mathworks.com/help/vnt/ug/channellist.html

channelTable.ChGrpNum = NaN(n,1);
channelTable.ChNameActual = strings(n,1);
channelTable

channelTable=4×3 table
 PortNames ChGrpNum ChNameActual
 ______________ ________ ____________

 "triangle" NaN ""
 "pwm" NaN ""
 "pwm_level" NaN ""
 "pwm_filtered" NaN ""

Perform Input Port to Channel Matching

The helperReportChannelInfo function searches the MDF-file for channel names that match the
model input port names. When found, the details of the channel are recorded in the table.
Specifically, the channel group number where the given channel is in the file and its actual defined
name. Note that the actual channel names are not exact matches to the model port names. In this
example, the channel name matching is performed case-insensitive and ignores the underscore
characters. This algorithm can be adapted as needed based on application-specific matching criteria.

channelTable = helperReportChannelInfo(channelTable, mdfChannelInfo)

channelTable=4×3 table
 PortNames ChGrpNum ChNameActual
 ______________ ________ _____________

 "triangle" 1 "Triangle"
 "pwm" 1 "PWM"
 "pwm_level" 1 "PWM_Level"
 "pwm_filtered" 1 "PWMFiltered"

Populate the Simulink Dataset Object with Channel Data

The dataset object created earlier contains both a single timeseries object and a structure of
timeseries objects. This makes assigning data back to them somewhat challenging. Things to keep in
mind include:

• When specifying TimeSeries as the return type from the MDF read function, you must call read
separately for each channel.

• Because the dataset object has dissimilar elements (a scalar timeseries and a scalar structure of
timeseries objects), you need to manually manage the collection and make sure you are writing to
the correct location.

for ii = 1:dsObj.numElements
 switch ii
 case {1} % [1x1 timeseries], triangle
 % Read the input port data from the MDF-file one channel at a time.
 mdfData = read(mdfObj, channelTable.ChGrpNum(ii), channelTable.ChNameActual(ii), "OutputFormat", "TimeSeries");
 % Populate the dataset object.
 dsObj{ii} = mdfData;

 case {2} % [1x1 struct], busInput
 for jj = 1:numel(fieldnames(dsObj.getElement(ii)))

14 Vehicle Network Toolbox Examples

14-122

https://www.mathworks.com/help/vnt/ug/read.html

 % Read the input port data from the MDF-file one channel at a time.
 mdfData = read(mdfObj, channelTable.ChGrpNum(jj+1), channelTable.ChNameActual(jj+1), "OutputFormat", "TimeSeries");
 % Populate the dataset object.
 dsObj{ii}.(channelTable.PortNames{jj+1}) = mdfData;
 end
 end
end
dsObj

dsObj =
Simulink.SimulationData.Dataset '' with 2 elements

 Name BlockPath
 ________ _________
 1 [1x1 timeseries] Triangle ''
 2 [1x1 struct] busInput ''

 - Use braces { } to access, modify, or add elements using index.

Enable the Dataset as Input to the Simulink Model

set_param(mdlName, "LoadExternalInput", "on");
set_param(mdlName, "ExternalInput", "dsObj");

Run the Model

Upon executing the model, note that channel data from the MDF-file properly maps to the designated
input ports and plots through Simulink as expected.

open_system(mdlName);
bp = find_system(mdlName, "BlockType", "Scope");
open_system(bp);
pause(1)
sim(mdlName, "TimeOut", 10);

 Map Channels from MDF-Files to Simulink Model Input Ports

14-123

Close the File

Close access to the MDF-file by clearing its variable from the workspace.

clear mdfObj

Helper Functions
function mdlInputNames = helperGetMdlInputNames(mdlName)
% helperGetMdlInputNames Find input port names of a Simulink model.
%
% This function takes in the name of a Simulink model and returns the names of each model input. This specific model has
% both a bus and a stand-alone input port going into it. To drive an input port that expects a bus means you need to supply
% the signals as timeseries objects in a struct that matches the structure of the bus object attached to the input port.

% Test to see if the model is currently loaded in memory.
isLoaded = bdIsLoaded(matlab.lang.makeValidName(mdlName));

% If the model is not open then load it.
if ~isLoaded
 load_system(mdlName);
end

dsObj = createInputDataset(mdlName);
numElements = dsObj.numElements;
isStruct = zeros(1:numElements);

14 Vehicle Network Toolbox Examples

14-124

% Check to see if any of the elements in the returned dataset object are
% structs. If they are, assume they are for an input port that accepts a bus.
for elementIdx = 1:numElements
 isStruct(elementIdx) = isa(dsObj.getElement(elementIdx),"struct");
end

% For a port that accepts a bus, the data to be loaded must be arranged in a struct
% that matches the structure of the bus object attached to the input port.
busInportIdx = 1;
for idx = 1:numElements
 if isStruct(idx)
 % Get names of signals from a bus input port.
 inPortsBus(busInportIdx, :) = string(fieldnames(dsObj.getElement(idx)));
 else
 % Get signal name from a non-bus input port.
 inPorts(idx) = string(dsObj.getElement(idx).Name);
 end
end

mdlInputNames = [inPorts, inPortsBus]';
end

function channelTableOut = helperReportChannelInfo(channelTableIn, mdfChannelInfo)
% channelTableOut Reports if a channel is present in a set of channel names.

% Assign the output data.
channelTableOut = channelTableIn;

% Remove underscores and make everything lowercase for matching.
inPortChannelNames = lower(erase(channelTableIn.PortNames,"_"));
mdfChannelNames = lower(erase(mdfChannelInfo.ChannelName,"_"));

% Match the input channel names to the channel names in the MDF-file.
[~, inPortidx] = ismember(inPortChannelNames, mdfChannelNames);

% Assign the relevant information back to the channel table.
channelTableOut.ChGrpNum = mdfChannelInfo{(inPortidx), "ChannelGroupNumber"};
channelTableOut.ChNameActual = mdfChannelInfo{(inPortidx), "ChannelName"};
end

 Map Channels from MDF-Files to Simulink Model Input Ports

14-125

Get Started with CDFX-Files
This example shows how to import a calibration data file into MATLAB, examine and modify its
contents, and export the changes back to a file on disk.

Import a CDFX-File

Import data from a CDFX-file using the cdfx function.

cdfxObj = cdfx("CDFXExampleFile.cdfx")

cdfxObj =
 CDFX with properties:

 Name: "CDFXExampleFile.cdfx"
 Path: "C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex38787800\CDFXExampleFile.cdfx"
 Version: "CDF20"

Visualize Calibration Data

CDFX-files contain information about vehicle ECUs (systems), and their parameters (instances). Use
instanceList and systemList to visualize the calibration data in table form. These functions also
allow filtering based on instance or system short names.

iList = instanceList(cdfxObj)

iList=4×6 table
 ShortName System Category Value Units FeatureReference
 ____________________________ _______________ __________ _________________ _______ _________________

 "ASAM.C.SCALAR.GAIN" "ExampleSystem" "VALUE" {[3]} "gain" "FunctionScalar"
 "ASAM.C.SCALAR.BITMASK_0001" "ExampleSystem" "BOOLEAN" {[1]} "" "FunctionScalar"
 "ASAM.C.MAP" "ExampleSystem" "MAP" {1x1 struct } "" "Sample_Model_13"
 "ASAM.C.COM_AXIS" "ExampleSystem" "COM_AXIS" {[-9 -8 -5 -3 0]} "hours" ""

If you want to filter the table based on a desired short name, pass a string as a second argument.

iListArray = instanceList(cdfxObj, "ASAM.C.SCALAR")

iListArray=2×6 table
 ShortName System Category Value Units FeatureReference
 ____________________________ _______________ _________ _____ ______ ________________

 "ASAM.C.SCALAR.GAIN" "ExampleSystem" "VALUE" {[3]} "gain" "FunctionScalar"
 "ASAM.C.SCALAR.BITMASK_0001" "ExampleSystem" "BOOLEAN" {[1]} "" "FunctionScalar"

The default querying behavior will return a table for all instances whose short names partially match
the search string. To filter for an exact instance name match, use the ExactMatch name-value pair.

iListArrayExact = instanceList(cdfxObj, "ASAM.C.SCALAR.BITMASK_0001", "ExampleSystem", "ExactMatch", true)

iListArrayExact=1×6 table
 ShortName System Category Value Units FeatureReference
 ____________________________ _______________ _________ _____ _____ ________________

14 Vehicle Network Toolbox Examples

14-126

https://www.mathworks.com/help/vnt/ug/cdfx.html
https://www.mathworks.com/help/vnt/ug/asam.cdfx.instancelist.html
https://www.mathworks.com/help/vnt/ug/asam.cdfx.systemlist.html

 "ASAM.C.SCALAR.BITMASK_0001" "ExampleSystem" "BOOLEAN" {[1]} "" "FunctionScalar"

For CDFX-files that contain calibration data for more than one ECU system, systemList can be
useful to view the contents of each system at a high level.

sList = systemList(cdfxObj)

sList=1×3 table
 ShortName Instances Metadata
 _______________ ___ ________

 "ExampleSystem" {["ASAM.C.SCALAR.GAIN" "ASAM.C.SCALAR.BITMASK_0001" ...]} "NO_VCD"

Examine and Modify Simple Calibration Parameters

Use getValue to extract the value of an instance from the CDFX object. Use setValue to modify the
value of the instance.

iValueScalar = getValue(cdfxObj, "ASAM.C.SCALAR.GAIN")

iValueScalar = 3

iValueScalarNew = iValueScalar + 20;
setValue(cdfxObj, "ASAM.C.SCALAR.GAIN", iValueScalarNew);
iValueScalarNew = getValue(cdfxObj, "ASAM.C.SCALAR.GAIN")

iValueScalarNew = 23

Work with More Complex Parameter Types

Certain instance categories contain more than just a physical value. These instances are often multi-
dimensional arrays that are scaled according to an axis. Calling getValue on these instances returns
a structure that contains each axis as a separate field, distinct from PhysicalValue.

To inspect the CUBOID instance, first call getValue, then examine the properties of the returned
structure. Notice that there is additional data associated with each axis, including the type of axis, its
physical values, and whether the axis values are referenced from another instance on the CDFX
object.

iValueMap = getValue(cdfxObj, "ASAM.C.MAP")

iValueMap = struct with fields:
 PhysicalValue: [5x5 double]
 Axis1: [1x1 struct]
 Axis2: [1x1 struct]

disp(iValueMap.PhysicalValue)

 2 15 27 40 55
 5 17 30 42 57
 7 20 32 47 60
 10 22 35 50 62
 12 25 37 52 65

disp(iValueMap.Axis1)

 Get Started with CDFX-Files

14-127

https://www.mathworks.com/help/vnt/ug/asam.cdfx.getvalue.html
https://www.mathworks.com/help/vnt/ug/asam.cdfx.setvalue.html

 ReferenceName: ""
 Category: "STD_AXIS"
 PhysicalValue: [0 63 126 189 252]
 IsReferenced: 0

disp(iValueMap.Axis2)

 ReferenceName: "ASAM.C.COM_AXIS"
 Category: "COM_AXIS"
 PhysicalValue: [-9 -8 -5 -3 0]
 IsReferenced: 1

We can also visualize the instance values using MATLAB plotting functions. For multidimensional
arrays, use the physical values of the axes structures to define the axes on the plot.

surf("ZDataSource", "iValueMap.PhysicalValue", "XDataSource", "iValueMap.Axis1.PhysicalValue", "YDataSource", "iValueMap.Axis2.PhysicalValue")
refreshdata;

Modifying the physical value of this instance works the same as for scalars. Update the physical value
field of the structure and pass it back to setValue.

iValueMap.PhysicalValue(:, 1) = iValueMap.PhysicalValue(:, 1)*2;
setValue(cdfxObj, "ASAM.C.MAP", iValueMap);

Now we can observe that the changes have been committed to the CDFX object in the workspace.

iValueMapNew = getValue(cdfxObj, "ASAM.C.MAP")

14 Vehicle Network Toolbox Examples

14-128

iValueMapNew = struct with fields:
 PhysicalValue: [5x5 double]
 Axis1: [1x1 struct]
 Axis2: [1x1 struct]

disp(iValueMapNew.PhysicalValue)

 4 15 27 40 55
 10 17 30 42 57
 14 20 32 47 60
 20 22 35 50 62
 24 25 37 52 65

To modify the axis values of this instance, we first need to know if the axis we want to modify is
referenced or not. This can be determined by examining the IsReferenced field of each axis
structure. If the axis is not referenced, we simply modify the PhysicalValue field of the axis
structure and pass the top-level structure back to setValue.

disp(iValueMapNew.Axis1.PhysicalValue)

 0 63 126 189 252

iValueMapNew.Axis1.PhysicalValue = iValueMapNew.Axis1.PhysicalValue*10;
setValue(cdfxObj, "ASAM.C.MAP", iValueMapNew);
iValueMapNewAxis = getValue(cdfxObj, "ASAM.C.MAP");
disp(iValueMapNewAxis.Axis1.PhysicalValue)

 0 630 1260 1890 2520

However, some axes are not defined on the instance itself, and are instead referenced from another
instance. There are specific instance categories for representing referenced axis values (COM_AXIS,
RES_AXIS, and CURVE_AXIS). Attempting to modify a referenced axis from a referencing instance
will result in an error. The solution is to update the values directly on the axis instance itself.
Information on whether an axis is using referenced values, including the short name of the instance
being referenced can be found on the axis fields of the top-level structure.

iValueCommonAxis = getValue(cdfxObj, iValueMapNewAxis.Axis2.ReferenceName)

iValueCommonAxis = 1×5

 -9 -8 -5 -3 0

iValueCommonAxis(:) = 1:5;
setValue(cdfxObj, iValueMapNewAxis.Axis2.ReferenceName, iValueCommonAxis);

Now that we have modified the original instance, we can observe that the changes are reflected in
the referencing instance.

iValueMapNew = getValue(cdfxObj, "ASAM.C.MAP")

iValueMapNew = struct with fields:
 PhysicalValue: [5x5 double]
 Axis1: [1x1 struct]
 Axis2: [1x1 struct]

iValueMapNew.Axis2.PhysicalValue

 Get Started with CDFX-Files

14-129

ans = 1×5

 1 2 3 4 5

Export Calibration Data to a File

Using write function, you can write back to the same file or to a new file by specifying a filepath.

write(cdfxObj, "NewExampleFile.cdfx");

14 Vehicle Network Toolbox Examples

14-130

https://www.mathworks.com/help/vnt/ug/asam.cdfx.write.html

Use CDFX-Files with Simulink
This example shows how to use calibration data from a CDFX-file as inputs to a Simulink model.

Import Data

Import the calibration data using the cdfx function.

cdfxObj = cdfx("CDFXExampleFile.cdfx")

cdfxObj =
 CDFX with properties:

 Name: "CDFXExampleFile.cdfx"
 Path: "C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex88524458\CDFXExampleFile.cdfx"
 Version: "CDF20"

Instantiate Local Variables

Use getValue to extract the desired parameters into the MATLAB workspace.

gainParam = getValue(cdfxObj, "ASAM.C.SCALAR.GAIN")

gainParam = 3

mapParam = getValue(cdfxObj, "ASAM.C.MAP")

mapParam = struct with fields:
 PhysicalValue: [5x5 double]
 Axis1: [1x1 struct]
 Axis2: [1x1 struct]

Lookup-Gain Model

open_system("CDFXSimulinkModel.slx");
cdfxMdl = gcs

cdfxMdl =
'CDFXSimulinkModel'

 Use CDFX-Files with Simulink

14-131

https://www.mathworks.com/help/vnt/ug/cdfx.html
https://www.mathworks.com/help/vnt/ug/asam.cdfx.getvalue.html

This model contains:

• 2-D Lookup Table block to represent the ASAM.C.MAP parameter from the CDFX-file. The "Table
data" field represents the physical value of the instance, and the "Breakpoint" fields represent the
physical values of the axes.

• Gain block to represent the ASAM.C.SCALAR.GAIN parameter from the CDFX-file.
• To Workspace block to log the simulation data.

Indexing Logic Subsystem

The Indexing Logic subsystem uses the physical values of the axes of the ASAM.C.MAP parameter,
along with signal routing blocks and a triggered subsystem, to produce all valid combinations of
lookup indices. This configuration can be useful if you need to test across the full range of possible
input values of a calibration parameter.

14 Vehicle Network Toolbox Examples

14-132

Log Output Data in MATLAB

The output of the simulation is sent to MATLAB by the To Workspace block, where it is stored as a
timeseries object called mapData. This data can now be inspected and visualized in the MATLAB
workspace.

sim(cdfxMdl);
plot(mapData)
title("Simulation Output for ASAM.C.MAP")

 Use CDFX-Files with Simulink

14-133

% Copyright 2018-2021 The MathWorks, Inc.

14 Vehicle Network Toolbox Examples

14-134

Use CDFX-Files with Simulink Data Dictionary
This example shows how to store calibration data from an ASAM CDFX-file in a data dictionary and
use these values as parameters to a Simulink model.

Import Data

Import the calibration data using the cdfx function.

cdfxObj = cdfx("CDFXExampleFile.cdfx")

cdfxObj =
 CDFX with properties:

 Name: "CDFXExampleFile.cdfx"
 Path: "/mathworks/home/rollinb/Documents/MATLAB/Examples/vnt-ex73237310-20190405222527/CDFXExampleFile.cdfx"
 Version: "CDF20"

Create and Populate Data Dictionary with Calibration Data

Use getValue to extract the desired parameters into the MATLAB workspace.

dictName = "CDFXExampleDD.sldd"

dictName =
"CDFXExampleDD.sldd"

Check if dictionary is already in the working folder.

if isfile(dictName)
 % If data dictionary exists, open it.
 dDict = Simulink.data.dictionary.open(dictName)
else
 % If dictionary does not exist, create it and populate with CDFX data.
 dDict = Simulink.data.dictionary.create(dictName)
 ddSection = getSection(dDict, "Design Data")

 addEntry(ddSection, "gainParam", getValue(cdfxObj, "ASAM.C.SCALAR.GAIN"))
 addEntry(ddSection, "mapParam", getValue(cdfxObj, "ASAM.C.MAP"))
end

dDict =
 Dictionary with properties:

 DataSources: {0×1 cell}
 HasAccessToBaseWorkspace: 0
 EnableAccessToBaseWorkspace: 0
 HasUnsavedChanges: 0
 NumberOfEntries: 2

Display contents of the data dictionary.

listEntry(dDict)

 Section Name Status DataSource LastModified LastModifiedBy Class

 Use CDFX-Files with Simulink Data Dictionary

14-135

https://www.mathworks.com/help/vnt/ug/cdfx.html
https://www.mathworks.com/help/vnt/ug/asam.cdfx.getvalue.html

 Design Data gainParam CDFXExampleDD.sldd 2019-04-05 22:33 rollinb double
 Design Data mapParam CDFXExampleDD.sldd 2019-04-05 22:33 rollinb struct

Link Data Dictionary to Simulink Model

Open the Simulink model, then use set_param to link the existing data dictionary to your model.
This will allow the model to access the values defined within the dictionary.

open_system("CDFXSLDDModel.slx");
cdfxMdl = gcs

cdfxMdl =
'CDFXSLDDModel'

set_param(gcs, "DataDictionary", dictName)

We can now close the connection to the data dictionary.

close(dDict)

Lookup-Gain Model

This model contains:

• 2-D Lookup Table block to represent the ASAM.C.MAP parameter from the CDFX-file. The "Table
data" field represents the physical value of the instance, and the "Breakpoint" fields represent the
physical values of the axes.

• Gain block to represent the ASAM.C.SCALAR.GAIN parameter from the CDFX-file.
• To Workspace block to log the simulation data.

Indexing Logic Subsystem

The Indexing Logic subsystem uses the physical values of the axes of the ASAM.C.MAP parameter,
along with signal routing blocks and a triggered subsystem, to produce all valid combinations of
lookup indices. This configuration can be useful if you need to test across the full range of possible
input values of a calibration parameter.

14 Vehicle Network Toolbox Examples

14-136

Log Output Data in MATLAB

The output of the simulation is sent to MATLAB by the To Workspace block, where it is stored as a
timeseries object called mapData. This data can now be inspected and visualized in the MATLAB
workspace.

sim(cdfxMdl);
plot(mapData)
title("Simulation Output for ASAM.C.MAP")

 Use CDFX-Files with Simulink Data Dictionary

14-137

% Copyright 2018-2021 The MathWorks, Inc.

14 Vehicle Network Toolbox Examples

14-138

Develop an App Designer App for a Simulink Model Using CAN
This example shows how to construct a test application user interface (UI) and connect it to a
Simulink model using virtual CAN channels. The test application UI is constructed using MATLAB
App Designer™ along with several Vehicle Network Toolbox™ functions to provide a virtual CAN bus
interface to a Simulink model of an automotive cruise control application. The test application UI
allows a user to provide input stimulus to the cruise control algorithm model, observe results fed
back from the model, log CAN messages to capture test stimuli, and replay logged CAN messages to
debug and correct issues with the algorithm model. The example shows the key Vehicle Network
Toolbox functions and blocks used to implement CAN communication in the following areas:

• The test application UI supporting communication with the Simulink algorithm model for testing
via CAN

• The test application UI supporting logging and replaying of CAN data
• The Simulink algorithm model

Add Virtual CAN Channel Communication to the UI

In this section, we describe the key Vehicle Network Toolbox functions used to add a CAN channel
interface to the Simulink Cruise Control algorithm test application model. This covers the following
topics:

• Getting a list of available CAN channels
• Formatting the channel information for channel creation
• Creating the channel in the UI
• Configure the UI to transmit and receive CAN messages
• Starting and stopping the channel
• Extracting selected messages

 Develop an App Designer App for a Simulink Model Using CAN

14-139

Open App Designer

Open the test application UI in App Designer. With the test application UI open in App Designer you
can alternate between the "Design" and "Code" views to follow along as you explore the controls and
corresponding MATLAB code to communicate with the Simulink Cruise Control algorithm model via
virtual CAN channels. Use the following command to open the example UI:
appdesigner('CruiseControlTestUI.mlapp').

List Available CAN Channels

First, implement a mechanism to find and present a list of the available CAN channels for a user to
select. For this, we added a "Channel Configuration" menu item at the top left corner of the test
application UI. It has a "Select CAN Channel" sub-menu.

When the user clicks on the "Select CAN Channel" sub-menu, the helper function
getAvailableCANChannelInfo(app) is called via the sub-menu callback.
getAvailableCANChannelInfo() uses the Vehicle Network Toolbox function canChannelList
to detect the available CAN channels, as shown in the code fragment below:

function getAvailableCANChannelInfo(app)
 % Get a table containing all available CAN channels and devices.
 app.canChannelInfo = canChannelList;

 % Format CAN channel information for display on the UI.
 app.availableCANChannelsForDisplay = formatCANChannelEntryForDisplay(app);

 % Save the number of available constructors.
 app.numConstructors = numel(app.canChannelInfo.Vendor);
end

14 Vehicle Network Toolbox Examples

14-140

https://www.mathworks.com/help/releases/R2018b/vnt/ug/canchannellist.html
https://www.mathworks.com/help/vnt/ug/canchannellist.html

Run canChannelList to see how the available CAN channel information is stored.

canChannels = canChannelList

canChannels=12×6 table
 Vendor Device Channel DeviceModel ProtocolMode SerialNumber
 ___________ ___________ _______ ___________ _____________ ____________

 "MathWorks" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "MathWorks" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "Vector" "VN1610 1" 1 "VN1610" "CAN, CAN FD" "46457"
 "Vector" "VN1610 1" 2 "VN1610" "CAN, CAN FD" "46457"
 "Vector" "VN1610 3" 1 "VN1610" "CAN, CAN FD" "46456"
 "Vector" "VN1610 3" 2 "VN1610" "CAN, CAN FD" "46456"
 "Vector" "VN1610 2" 1 "VN1610" "CAN, CAN FD" "48599"
 "Vector" "VN1610 2" 2 "VN1610" "CAN, CAN FD" "48599"
 "Vector" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "Vector" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"
 "Kvaser" "Virtual 1" 1 "Virtual" "CAN, CAN FD" "0"
 "Kvaser" "Virtual 1" 2 "Virtual" "CAN, CAN FD" "0"

The list of channels returned from canChannelList is stored in the UI property
app.canChannelInfo and then displayed to the user in a "CAN Channel Selection" listdlg as
shown in the screen shot above.

Format Channel List for Channel Configuration

The user selects a CAN channel from the "CAN Channel Selection" listdlg. The listdlg returns
an index corresponding to the user's selection. This index is passed to the helper function
formatCANChannelConstructor.

function canChannelConstructor = formatCANChannelConstructor(app, index)
 canChannelConstructor = "canChannel(" + "'" + app.canChannelInfo.Vendor(index) + "'" + ", " + "'" + app.canChannelInfo.Device(index) + "'" + ", " + app.canChannelInfo.Channel(index) + ")";
end

As shown in the code fragment above, formatCANChannelConstructor uses the strings stored in
the table of CAN channels, app.canChannelInfo, to assemble the channel object constructor string
corresponding to the channel the user selected from the channel selector list dialog box. To see an
example of a CAN channel constructor string, execute the code shown below.

index = 1;
canChannelConstructor = "canChannel(" + "'" + canChannels.Vendor(index) + "'" + ", " + "'" + canChannels.Device(index) + "'" + ", " + canChannels.Channel(index) + ")"

canChannelConstructor =
"canChannel('MathWorks', 'Virtual 1', 1)"

The CAN channel constructor string is stored in the app UI property
app.canChannelConstructorSelected and will be used later to create the selected CAN
channel object in the application UI as well as to update the Vehicle Network Toolbox Simulink blocks
that implement the CAN channel interface in the Simulink Cruise Control algorithm model.

Create CAN Channel in the UI

When the UI is first opened and initialized, the formatted CAN channel constructor string stored in
app.canChannelConstructorSelected is used by the helper function setupCANChannel to create an
instance of a CAN channel object, connect a network configuration database (.DBC) file, and set the

 Develop an App Designer App for a Simulink Model Using CAN

14-141

https://www.mathworks.com/help/vnt/ug/canchannellist.html
https://www.mathworks.com/help/vnt/ug/canchannellist.html
https://www.mathworks.com/help/matlab/ref/listdlg.html
https://www.mathworks.com/help/matlab/ref/listdlg.html
https://www.mathworks.com/help/matlab/ref/listdlg.html

bus speed as shown in the code fragment below. The resulting channel object is stored in the UI
property app.canChannelObj.

function setupCANChannel(app)
 % Open CAN database file.
 db = canDatabase('CruiseControl.dbc');

 % Create a CAN channel for sending and receiving messages.
 app.canChannelObj = eval(app.canChannelConstructorSelected);

 % Attach CAN database to channel for received message decoding.
 app.canChannelObj.Database = db;

 % Set the baud rate (can only do this if the UI has channel initialization access).
 if app.canChannelObj.InitializationAccess
 configBusSpeed(app.canChannelObj, 500000);
 end
end

To see an example CAN database object, execute the following:

db = canDatabase('CruiseControl.dbc')

db =
 Database with properties:

 Name: 'CruiseControl'
 Path: '\\fs-01-mi\shome$\rollinb\Documents\MATLAB\Examples\vnt-ex00964061\CruiseControl.dbc'
 Nodes: {2×1 cell}
 NodeInfo: [2×1 struct]
 Messages: {2×1 cell}
 MessageInfo: [2×1 struct]
 Attributes: {'BusType'}
 AttributeInfo: [1×1 struct]
 UserData: []

To see an example CAN channel object, execute the following:

% Instantiate the CAN channel object using the channel constructor string.
canChannelObj = eval(canChannelConstructor);

% Attach the CAN database to the channel object.
canChannelObj.Database = db

canChannelObj =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0

14 Vehicle Network Toolbox Examples

14-142

 MessagesTransmitted: 0
 InitializationAccess: 1
 InitialTimestamp: [0×0 datetime]
 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: [1×1 can.Database]
 UserData: []

setupCANChannel uses the following Vehicle Network Toolbox functions:

• canChannel to instantiate the channel object using the eval command and the CAN channel
constructor string stored in the app UI property app.canChannelConstructorSelected. The
resultant channel object is stored in the app UI property app.canChannelObj.

• canDatabase to create a CAN database (.DBC) object representing the DBC-file. This object is
stored in the "Database" property of the channel object.

Setup to Transmit CAN Messages

After setting up the selected CAN channel object and storing it in the UI property
app.canChannelObj, the next step is to call the helper function setupCANTransmitMessages,
shown in the code fragment below. setupCANTransmitMessages defines the CAN message to
transmit from the UI, populates the message payload with signals, assigns each signal a value, and
queues the message to transmit periodically once the CAN channel is started.

function setupCANTransmitMessages(app)
 % Create a CAN message container.
 app.cruiseControlCmdMessage = canMessage(app.canChannelObj.Database, 'CruiseCtrlCmd');

 % Fill the message container with signals and assign values to each signal.
 app.cruiseControlCmdMessage.Signals.S01_CruiseOnOff = logical2Numeric(app, app.cruisePowerCheckBox.Value);
 app.cruiseControlCmdMessage.Signals.S02_Brake = logical2Numeric(app, app.brakeOnOffCheckBox.Value);
 app.cruiseControlCmdMessage.Signals.S03_VehicleSpeed = app.vehicleSpeedSlider.Value;
 app.cruiseControlCmdMessage.Signals.S04_CoastSetSw = logical2Numeric(app, app.cruiseCoastSetCheckBox.Value);
 app.cruiseControlCmdMessage.Signals.S05_AccelResSw = logical2Numeric(app, app.cruiseAccelResumeCheckBox.Value);

 % Set up periodic transmission of this CAN message. Actual transmission starts/stops with CAN channel start/stop.
 transmitPeriodic(app.canChannelObj, app.cruiseControlCmdMessage, 'On', 0.1);
end

To see what the CAN message object looks like, execute the following:

cruiseControlCmdMessage = canMessage(canChannelObj.Database, 'CruiseCtrlCmd')

 Develop an App Designer App for a Simulink Model Using CAN

14-143

https://www.mathworks.com/help/vnt/ug/canchannel.html
https://www.mathworks.com/help/vnt/ug/candatabase.html

cruiseControlCmdMessage =
 Message with properties:

 Message Identification
 ProtocolMode: 'CAN'
 ID: 256
 Extended: 0
 Name: 'CruiseCtrlCmd'

 Data Details
 Timestamp: 0
 Data: [0 0]
 Signals: [1×1 struct]
 Length: 2

 Protocol Flags
 Error: 0
 Remote: 0

 Other Information
 Database: [1×1 can.Database]
 UserData: []

cruiseControlCmdMessage.Signals

ans = struct with fields:
 S03_VehicleSpeed: 0
 S05_AccelResSw: 0
 S04_CoastSetSw: 0
 S02_Brake: 0
 S01_CruiseOnOff: 0

setupCANTransmitMessages uses the following Vehicle Network Toolbox functions:

• canMessage to build a CAN message based defined in the CAN database object.
• transmitPeriodic to queue the message stored in the UI property

app.cruiseControlCmdMessage for periodic transmission on the channel defined by the channel
object stored in the UI property app.canChannelObj, at the rate specified by the last argument, in
this case every 0.1 seconds.

Setup to Receive CAN Messages

The UI needs to receive CAN messages on a periodic basis to update the plots with feedback from the
Cruise Control algorithm within the Simulink model. To achieve this, we first create a MATLAB timer
object as shown in the code fragment below.

% create a timer to receive CAN msgs
app.receiveCANmsgsTimer = timer('Period', 0.5,...
 'ExecutionMode', 'fixedSpacing', ...
 'TimerFcn', @(~,~)receiveCANmsgsTimerCallback(app));

The timer object will call the timer callback function receiveCANmsgsTimerCallback every 0.5
seconds. receiveCANmsgsTimerCallback, shown in the code fragment below, retrieves all the
CAN messages from the bus, uses the helper function getCruiseCtrlFBCANmessage to extract the
CAN messages fed back from the Cruise Control Algorithm model, and updates the UI plots with the
extracted CAN message data.

14 Vehicle Network Toolbox Examples

14-144

https://www.mathworks.com/help/vnt/ug/canmessage.html
https://www.mathworks.com/help/vnt/ug/transmitperiodic.html

% receiveCANmsgsTimerCallback Timer callback function for GUI updating
function receiveCANmsgsTimerCallback(app)
 try
 % Receive available CAN messages.
 msg = receive(app.canChannelObj, Inf, 'OutputFormat', 'timetable');

 % Update Cruise Control Feedback CAN message data.
 newFbData = getCruiseCtrlFBCANmessage(app, msg);

 if ~newFbData
 return;
 end

 % Update target speed and engaged plots with latest data from CAN bus.
 updatePlots(app);
 catch err
 disp(err.message)
 end
end

To see what the messages returned from the receive command look like, run the following code:

% Queue periodic transmission of a CAN message to generate some message data once the channel
% starts.
transmitPeriodic(canChannelObj, cruiseControlCmdMessage, 'On', 0.1);

% Start the channel.
start(canChannelObj);

% Wait 1 second to allow time for some messages to be generated on the bus.
pause(1);

% Retrieve all messages from the bus and output the results as a timetable.
msg = receive(canChannelObj, Inf, 'OutputFormat','timetable')

msg=31×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 _____________ ___ ________ _________________ ___________ ______ ____________ _____ ______

 0.0066113 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.059438 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.16047 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.26045 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.36045 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.46046 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.56046 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.66046 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.75945 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.86044 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.95945 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 1.0594 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 1.1594 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 1.2594 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 1.3595 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 1.4605 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 ⋮

 Develop an App Designer App for a Simulink Model Using CAN

14-145

% Stop the channel.
stop(canChannelObj)

receiveCANmsgsTimerCallback uses the following Vehicle Network Toolbox functions:

• receive to retrieve CAN messages from the CAN bus. In this case, the function is configured to
retrieve all messages since the previous invocation and output the results as a MATLAB timetable.

Extract Select CAN Messages

The helper function getCruiseCtrlFBCANmessage filters out the "CruiseCtrlFB" messages from all
the retrieved CAN messages, extracts the tspeedFb and engagedFb signals from these messages, and
concatenates these to MATLAB timeseries objects for the tspeedFb and engagedFb signals. These
timeseries objects are stored in the UI properties app.tspeedFb and app.engagedFb, respectively. The
stored timeseries signals are used to update the plots for each signal on the UI. Note the use of the
seconds method to convert the time data stored in the timetable from a duration array into the
equivalent numeric array in units of seconds in the timeseries objects for each signal.

function newFbData = getCruiseCtrlFBCANmessage(app, msg)
 % Exit if no messages were received as there is nothing to update.
 if isempty(msg)
 newFbData = false;
 return;
 end

 % Extract signals from all CruiseCtrlFB messages.
 cruiseCtrlFBSignals = canSignalTimetable(msg, "CruiseCtrlFB");

 % if no messages then just return as there is nothing to do
 if isempty(cruiseCtrlFBSignals)
 newFbData = false;
 return;
 end

 if ~isempty(cruiseCtrlFBSignals)
 % Received new Cruise Control Feedback messages, so create time series from CAN signal data
 % save the Target Speed feedback signal.
 if isempty(app.tspeedFb) % cCeck if target speed feedback property has been initialized.
 app.tspeedFb = cell(2,1);

 % It appears Simulink.SimulationData.Dataset class is not
 % compatible with MATLAB Compiler, so change the way we store data
 % from a Dataset format to cell array.

 % Save target speed actual data.
 app.tspeedFb = timeseries(cruiseCtrlFBSignals.F02_TargetSpeed, seconds(cruiseCtrlFBSignals.Time),...
 'Name','CruiseControlTargetSpeed');
 else % Add to existing data.
 % Save target speed actual data.
 app.tspeedFb = timeseries([app.tspeedFb.Data; cruiseCtrlFBSignals.F02_TargetSpeed], ...
 [app.tspeedFb.Time; seconds(cruiseCtrlFBSignals.Time)],'Name','CruiseControlTargetSpeed');
 end

 % Save the Cruise Control Engaged actual signal.
 % Check if Cruise engaged property has been initialized.
 if isempty(app.engagedFb)
 app.engagedFb = cell(2,1);

14 Vehicle Network Toolbox Examples

14-146

https://www.mathworks.com/help/vnt/ug/receive.html

 % It appears Simulink.SimulationData.Dataset class is not
 % compatible with MATLAB Compiler, so change the way we store data
 % from a Dataset format to cell array.

 % Save cruise engaged command data.
 app.engagedFb = timeseries(cruiseCtrlFBSignals.F01_Engaged,seconds(cruiseCtrlFBSignals.Time),...
 'Name','CruiseControlEngaged');
 else % Add to existing logsout.
 % Save cruise engaged command data.
 app.engagedFb = timeseries([app.engagedFb.Data; cruiseCtrlFBSignals.F01_Engaged], ...
 [app.engagedFb.Time; seconds(cruiseCtrlFBSignals.Time)],'Name','CruiseControlEngaged');
 end

 newFbData = true;
 end
end

The helper function getCruiseCtrlFBCANmessage uses the following Vehicle Network Toolbox
functions:

• canSignalTimetable to return a MATLAB timetable containing the signals from the CAN
message CruiseCtrlFB.

Start the CAN Channel

Once the CAN channel object app.canChannelObj has been instantiated and messages have been set
up to be transmitted and received, we can now start the channel. When the user clicks the start sim
button on the UI, we want the channel to start just before we start running the Simulink model. To
achieve this, the helper function startSimApplication is called. startSimApplication, shown
in the code fragment below, checks to make sure we are using a virtual CAN channel, because this is
the only type that makes sense if you are using only desktop simulation. Next, it checks to make sure
the Simulink model we want to connect to is loaded in memory using the bdIsLoaded command. If
the model is loaded and is not already running, the UI plots are cleared to accept new signal data, the
CAN channel is started using the helper function startCANChannel, and the model is started.

function startSimApplication(app, index)
 % Start the model running on the desktop.

 % Check to see if hardware or virtual CAN channel is selected, otherwise do nothing.
 if app.canChannelInfo.DeviceModel(index) == "Virtual"
 % Check to see if the model is loaded before trying to run.
 if bdIsLoaded(app.mdl)
 % Model is loaded, now check to see if it is already running.
 if ~strcmp('running',get_param(app.mdl,'SimulationStatus'))
 % Model is not already running, so start it
 % flush the CAN Receive message buffers.
 app.tspeedFb = [];
 app.engagedFb = [];

 % Clear figure window.
 cla(app.tspeedPlot)
 cla(app.engagedPlot)

 % Start the CAN channels and update timer if it isn't already running.
 startCANChannel(app);

 Develop an App Designer App for a Simulink Model Using CAN

14-147

https://www.mathworks.com/help/vnt/ug/cansignaltimetable.html

 % Start the model.
 set_param(app.mdl, 'SimulationCommand', 'start');

 % Set the sim start/stop button icon to the stop icon indicating the model has
 % been successfully started and is ready to be stopped at the next button press.
 app.SimStartStopButton.Icon = "IconEnd.png";
 app.StartSimLabel.Text = "Stop Sim";
 else
 % Model is already running, inform the user.
 warnStr = sprintf('Warning: Model %s is already running', app.mdl);
 warndlg(warnStr, 'Warning');
 end
 else
 % Model is not yet loaded, so warn the user.
 warnStr = sprintf('Warning: Model %s is not loaded\nPlease load the model and try again', app.mdl);
 warndlg(warnStr, 'Warning');
 end
 end
end

The helper function startCANChannel is shown in the code fragment below. This function checks to
make sure the channel is not already running before it starts it. Next, it starts the MATLAB timer
object so that the timer callback function receiveCANmsgsTimerCallback, described in the
previous section, is called every 0.5 seconds to retrieve CAN message data from the bus.

function startCANChannel(app)
 % Start the CAN channel if it isn't already running.
 try
 if ~app.canChannelObj.Running
 start(app.canChannelObj);
 end
 catch
 % do nothing.
 end

 % Start the CAN receive processing timer - check to see if it is already running. This allows us to change CAN channels
 % with or without starting and stopping the model running on the real time target.
 if strcmpi(app.receiveCANmsgsTimer.Running, 'off')
 start(app.receiveCANmsgsTimer);
 end
end

startCANchannel uses the following Vehicle Network Toolbox function:

• start to start the CAN channel running. The channel will remain on-line until a stop command is
issued.

Stop the CAN Channel

When the user clicks the stop sim button on the UI, we want to stop the Simulink model just before
stopping the CAN channel. To achieve this, the helper function stopSimApplication is called.
stopSimApplication, shown in the code fragment below, checks to make sure we are using a
virtual CAN channel, because this is the only type that makes sense if you are using only desktop
simulation. Next, it stops the Simulink model and calls the helper function stopCANChannel to stop
the CAN channel.

function stopSimApplication(app, index)
 % Stop the model running on the desktop.

14 Vehicle Network Toolbox Examples

14-148

https://www.mathworks.com/help/vnt/ug/start.html

 try
 % Check to see if hardware or virtual CAN channel is selected.
 if app.canChannelInfo.DeviceModel(index) == "Virtual"
 % Virtual channel selected, so issue a stop command to the
 % the simulation, even if it is already stopped.
 set_param(app.mdl, 'SimulationCommand', 'stop')

 % Stop the CAN channels and update timer.
 stopCANChannel(app);
 end

 % Set the sim start/stop button text to Start indicating the model has
 % been successfully stopped and is ready to start again at the next
 % button press.
 app.SimStartStopButton.Icon = "IconPlay.png";
 app.StartSimLabel.Text = "Start Sim";
 catch
 % Do nothing at the moment.
 end
end

The helper function stopCANChannel is shown in the code fragment below. This function stops the
CAN channel, then stops the MATLAB timer object so that the timer callback function
receiveCANmsgsTimerCallback, described previously, is no longer called to retrieve messages
from the bus.

function stopCANChannel(app)
 % Stop the CAN channel.
 stop(app.canChannelObj);

 % Stop the CAN message processing timer.
 stop(app.receiveCANmsgsTimer);
end

stopCANchannel uses the following Vehicle Network Toolbox function:

• stop to stop the CAN channel. The channel will remain offline until another start command is
issued.

Add CAN Log and Replay Capability

In this step, we will describe the key Vehicle Network Toolbox functions used to add the ability to log,
save, and replay CAN messages. To implement this functionality, we instantiate a second CAN
channel, identical to the first one created. Because the second CAN channel object is identical to the
first one, it will see and collect the same messages as the first CAN channel object. The second CAN
channel will be started when the user clicks the start logging button on the UI as shown in the UI
screen shot below. The channel continues to run and collect messages until the user clicks the stop
logging button on the UI. Once the user stops logging CAN messages, we will retrieve all the
messages that have accumulated in the message buffer for the second CAN channel object, extract
the messages we are interested in replaying, and save them to a MAT-file. Once the messages have
been saved, we can replay them using the first CAN channel to provide an input stimulus to the
Simulink Cruise Control algorithm model for debugging and algorithm verification purposes.

 Develop an App Designer App for a Simulink Model Using CAN

14-149

https://www.mathworks.com/help/vnt/ug/stop.html

This description will cover the following topics:

• Setup a channel to log CAN messages
• Starting and Stopping the channel
• Retrieving and extracting logged CAN messages
• Saving the extracted messages to a file
• Loading saved messages from a file
• Start playback of logged CAN messages
• Stop playback of logged CAN messages

Setup a CAN Channel Object in the UI to Log CAN Messages

In a manner directly analogous to how the first CAN channel was instantiated, the formatted CAN
channel constructor string stored in app.canChannelConstructorSelected is used by a new helper
function setupCANLogChannel to create a second instance of a CAN channel object, connect the
same network configuration database (.DBC) file as was used for the first channel, and set the bus
speed as shown in the code fragment below. The resulting channel object is stored in the UI property
app.canLogChannelObj.

14 Vehicle Network Toolbox Examples

14-150

function setupCANLogChannel(app)
 % Open CAN database file.
 db = canDatabase('CruiseControl.dbc');

 % Create a CAN channel for sending and receiving messages.
 app.canLogChannelObj = eval(app.canChannelConstructorSelected);

 % Attach CAN database to channel for received message decoding.
 app.canLogChannelObj.Database = db;

 % Set the baud rate (can only do this if the UI has channel initialization access).
 if app.canLogChannelObj.InitializationAccess
 configBusSpeed(app.canLogChannelObj, 500000);
 end
end

To see an example CAN database object, execute the following code:

db = canDatabase('CruiseControl.dbc')

db =
 Database with properties:

 Name: 'CruiseControl'
 Path: '\\fs-01-mi\shome$\rollinb\Documents\MATLAB\Examples\vnt-ex00964061\CruiseControl.dbc'
 Nodes: {2×1 cell}
 NodeInfo: [2×1 struct]
 Messages: {2×1 cell}
 MessageInfo: [2×1 struct]
 Attributes: {'BusType'}
 AttributeInfo: [1×1 struct]
 UserData: []

To see an example CAN channel object, execute the following code:

% Instantiate the CAN channel object using the channel constructor string.
canLogChannelObj = eval(canChannelConstructor);

% Attach the CAN database to the channel object.
canLogChannelObj.Database = db

canLogChannelObj =
 Channel with properties:

 Device Information
 DeviceVendor: 'MathWorks'
 Device: 'Virtual 1'
 DeviceChannelIndex: 1
 DeviceSerialNumber: 0
 ProtocolMode: 'CAN'

 Status Information
 Running: 0
 MessagesAvailable: 0
 MessagesReceived: 0
 MessagesTransmitted: 0
 InitializationAccess: 0
 InitialTimestamp: [0×0 datetime]

 Develop an App Designer App for a Simulink Model Using CAN

14-151

 FilterHistory: 'Standard ID Filter: Allow All | Extended ID Filter: Allow All'

 Channel Information
 BusStatus: 'N/A'
 SilentMode: 0
 TransceiverName: 'N/A'
 TransceiverState: 'N/A'
 ReceiveErrorCount: 0
 TransmitErrorCount: 0
 BusSpeed: 500000
 SJW: []
 TSEG1: []
 TSEG2: []
 NumOfSamples: []

 Other Information
 Database: [1×1 can.Database]
 UserData: []

setupCANLogChannel uses the following Vehicle Network Toolbox functions:

• canChannel to instantiate the channel object using the eval command and the CAN channel
constructor string stored in the app UI property app.canChannelConstructorSelected. The
resultant channel object is stored in the app UI property app.canLogChannelObj.

• canDatabase to create a CAN database (.DBC) object representing the DBC-file. This object is
stored in the "Database" property of the channel object.

Start the CAN Log Channel

As with the first CAN channel, the CAN channel object app.canLogChannelOb, was instantiated when
the test application UI is opened. When the user clicks the start Logging button on the UI as shown
on the screen shot above, we call the helper function startCANLogChannel, shown in the code
fragment below. This function checks to see if the second CAN channel is already running and starts
it if isn't.

function startCANLogChannel(app)
 % Start the CAN Log channel if it isn't already running.
 try
 if ~app.canLogChannelObj.Running
 start(app.canLogChannelObj);
 end
 catch
 % Do nothing.
 end
end

startCANLogChannel uses the following Vehicle Network Toolbox function:

• start to start the CAN channel running. The channel will remain online until a stop command is
issued.

Stop the CAN Log Channel

When the user clicks the "Stop logging" button on the UI, the button callback calls the helper
function stopCANLogging, shown in the code fragment below. stopCANLogging stops the CAN

14 Vehicle Network Toolbox Examples

14-152

https://www.mathworks.com/help/vnt/ug/canchannel.html
https://www.mathworks.com/help/vnt/ug/candatabase.html
https://www.mathworks.com/help/vnt/ug/start.html

channel and retrieves all the messages accumulated in the second channel buffer since the second
CAN channel was started by the user clicking the "Start Logging" button.

function stopCANLogging(app)
 % Stop the CAN Log channel.
 stop(app.canLogChannelObj);

 % Get the messages from the CAN log message queue.
 retrieveLoggedCANMessages(app);

 % Update the button icon and label.
 app.canLoggingStartStopButton.Icon = 'IconPlay.png';
 app.StartLoggingLabel.Text = "Start Logging";
end

stopCANLogging uses the following Vehicle Network Toolbox function:

• stop to stop the CAN channel. The channel will remain offline until another start command is
issued.

Retrieve and Extract Logged Messages

Once the logging CAN channel has been stopped, the helper function
retrieveLoggedCANMessages, shown in the code fragment below, is called to retrieve all the CAN
messages from the second channel bus. The CAN messages are acquired from the second channel
bus using the receive command and logical indexing is used to extract the "CruiseCtrlCmd"
messages from all the message timetable returned by the receive command.

function retrieveLoggedCANMessages(app)
 try
 % Receive available CAN message
 % initialize buffer to make sure it is empty.
 app.canLogMsgBuffer = [];

 % Receive available CAN messages.
 msg = receive(app.canLogChannelObj, Inf, 'OutputFormat', 'timetable');

 % Fill the buffer with the logged Cruise Control Command CAN message data.
 app.canLogMsgBuffer = msg(msg.Name == "CruiseCtrlCmd", :);
 catch err
 disp(err.message)
 end
end

To see what the messages returned from the receive command look like in the timetable format, run
the following code:

% Queue periodic transmission of CAN messages to generate sample message data once the channel starts.
cruiseControlFbMessage = canMessage(db, 'CruiseCtrlFB');
transmitPeriodic(canChannelObj, cruiseControlFbMessage, 'On', 0.1);
transmitPeriodic(canChannelObj, cruiseControlCmdMessage, 'On', 0.1);

% Start the first channel.
start(canChannelObj);

% Start the second (logging) channel.
start(canLogChannelObj);

 Develop an App Designer App for a Simulink Model Using CAN

14-153

https://www.mathworks.com/help/vnt/ug/stop.html

% Wait 1 second to allow time for some messages to be generated on the bus.
pause(1);

% Stop the channels.
stop(canChannelObj)
stop(canLogChannelObj)

% Retrieve all messages from the logged message bus and output the results as a timetable.
msg = receive(canLogChannelObj, Inf, 'OutputFormat','timetable')

msg=20×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ _________________ ___________ ______ ____________ _____ ______

 0.077716 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.07772 sec 512 false {'CruiseCtrlFB' } {1×2 uint8} 2 {1×1 struct} false false
 0.1777 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.17771 sec 512 false {'CruiseCtrlFB' } {1×2 uint8} 2 {1×1 struct} false false
 0.27673 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.27674 sec 512 false {'CruiseCtrlFB' } {1×2 uint8} 2 {1×1 struct} false false
 0.37673 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.37674 sec 512 false {'CruiseCtrlFB' } {1×2 uint8} 2 {1×1 struct} false false
 0.47773 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.47773 sec 512 false {'CruiseCtrlFB' } {1×2 uint8} 2 {1×1 struct} false false
 0.57674 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.57674 sec 512 false {'CruiseCtrlFB' } {1×2 uint8} 2 {1×1 struct} false false
 0.67673 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.67673 sec 512 false {'CruiseCtrlFB' } {1×2 uint8} 2 {1×1 struct} false false
 0.77771 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.77771 sec 512 false {'CruiseCtrlFB' } {1×2 uint8} 2 {1×1 struct} false false
 ⋮

% Extract only the Cruise Control Command CAN messages.
msgCmd = msg(msg.Name == "CruiseCtrlCmd", :)

msgCmd=10×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ _________________ ___________ ______ ____________ _____ ______

 0.077716 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.1777 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.27673 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.37673 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.47773 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.57674 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.67673 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.77771 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.87776 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false
 0.97769 sec 256 false {'CruiseCtrlCmd'} {1×2 uint8} 2 {1×1 struct} false false

retrieveLoggedCANMessages uses the following Vehicle Network Toolbox functions:

• receive to retrieve CAN messages from the CAN bus. In this case, the function is configured to
retrieve all messages since the previous invocation and output the results as a MATLAB timetable.

14 Vehicle Network Toolbox Examples

14-154

https://www.mathworks.com/help/vnt/ug/receive.html

Save Messages to a File

When the user clicks the "Save Logged Data" button on the UI, the helper function
saveLoggedCANDataToFile is called. This function opens a file browser window using the
uinputfile function. uinputfile returns the filename and path selected by the user to store the
logged CAN message data. The Vehicle Network Toolbox function canMessageReplayBlockStruct
is used to convert the CAN messages from a MATLAB timetable into a form that the CAN Replay
block can use. Once the logged CAN message data has been converted and saved to a file it can be
recalled and replayed later using the Vehicle Network Toolbox "Replay" Simulink block. To replay
messages in MATLAB with Vehicle Network Toolbox with the replay command, the timetable itself is
passed as input to the function.

function savedLoggedCANDataToFile(app)
 % Raise dialog box to prompt user for a CAN log file to store the logged data.
 [FileName,PathName] = uiputfile('*.mat','Select a .MAT file to store logged CAN data');

 if FileName ~= 0
 % User did not cancel the file selection operation, so OK to save
 % convert the CAN log data from Timetable to struct of arrays so the data is compatible
 % with the VNT Simulink Replay block.
 canLogStructOfArrays = canMessageReplayBlockStruct(app.canLogMsgBuffer);
 save(fullfile(PathName, FileName), 'canLogStructOfArrays');

 % Clear the buffer after saving it.
 app.canLogMsgBuffer = [];
 end
end

saveLoggedCANDataToFile uses the following Vehicle Network Toolbox function:

• canMessageReplayBlockStruct to convert the CAN messages stored in the MATLAB timetable
into a form that can be used by the CAN Message Replay Block.

Load Messages From a File

When the user clicks the "Load Logged Data" button on the UI the helper function
loadLoggedCANDataFromFile is called. This function opens a file browser window using the
uigetfile function, which returns the logged message filename selected by the user. The logged
CAN message data is loaded from the file and converted back into a timetable representation for use
with the Vehicle Network Toolbox replay command. Note that the same data file could be used
directly with the Vehicle Network Toolbox "Replay" Simulink block if the user desired to replay the
data from the Simulink model. You might choose to replay the data using the "Replay" block instead
of from the UI using the replay command because the "Replay" block works with the Simulink
debugger, pausing playback when the simulation halts on a breakpoint. The replay command, in
contrast, does not recognize when the Simulink model halts on a breakpoint and would simply keep
playing the stored message data from the file. For the purposes of the example, we will replay the
data using the replay command.

function loadLoggedCANDataFromFile(app)
 % Raise dialog box to prompt user for a CAN log file to load.
 [FileName,PathName] = uigetfile('*.mat','Select a CAN log file to load');

 % Return focus to main UI after dlg closes.
 figure(app.UIFigure)

 if FileName ~= 0

 Develop an App Designer App for a Simulink Model Using CAN

14-155

https://www.mathworks.com/help/vnt/ug/canreplay.html
https://www.mathworks.com/help/vnt/ug/canreplay.html
https://www.mathworks.com/help/vnt/ug/canmessagereplayblockstruct.html

 % User did not cancel the file selection operation, so OK to load
 % make sure the message buffer is empty before loading in the logged CAN data.
 app.canLogMsgBuffer = [];

 % Upload the saved message data from the selected file.
 canLogMsgStructOfArrays = load(fullfile(PathName, FileName), 'canLogStructOfArrays');

 % Convert the saved message data into timetables for the replay command.
 app.canLogMsgBuffer = canMessageTimetable(canLogMsgStructOfArrays.canLogStructOfArrays);
 end
end

loadLoggedCANDataFromFile uses the following Vehicle Network Toolbox function:

• canMessageTimetable to convert the CAN messages stored in a form compatible with the CAN
message "Replay" Simulink block back into a MATLAB timetable for use with the replay function.

Start Playback of Logged Messages

After the logged CAN message data has been loaded into the UI and reformatted it is ready for
playback using the Vehicle Network Toolbox replay command. When the user clicks "Start Replay"
button on the UI the helper function startPlaybackOfLoggedCANData is called. In order to replay
the logged CAN message data over the first CAN channel, all activity associated with this channel
must be halted and any buffered message data cleared. As shown in the code fragment below,
startPlaybackOfLoggedCANData turns off periodic transmission of CAN messages, stops the CAN
channel, clears any CAN message data buffered in the UI, and clears the plots displaying the signal
data fed back from the Cruise Control algorithm model. The CAN channel is then restarted, and the
logged CAN message data is replayed.

function startPlaybackOfLoggedCANData(app)
 % Turn off periodic transmission of CruiseCtrlCmd CAN message from UI controls.
 transmitPeriodic(app.canChannelObj, app.cruiseControlCmdMessage, 'Off');

 % Stop the UI CAN channel so we can instead use if for playback.
 stopCANChannel(app)

 % Flush the existing CAN messages stored for plotting.
 flushCANFbMsgQueue(app)

 % Clear the existing plots.
 cla(app.tspeedPlot)
 cla(app.engagedPlot)

 % Start the CAN Channel and replay the logged CAN message data.
 startCANChannel(app)

 % Replay the logged CAN data on the UI CAN Channel.
 replay(app.canChannelObj, app.canLogMsgBuffer);
end

startPlaybackOfLoggedCANData uses the following Vehicle Network Toolbox functions:

• transmitPeriodic to disable periodic transmission of the command signals sent to the Cruise
Control algorithm model in the "CruiseCtrlCmd" message.

• replay to replay logged CAN message data on the first CAN channel.

14 Vehicle Network Toolbox Examples

14-156

https://www.mathworks.com/help/vnt/ug/canmessagetimetable.html
https://www.mathworks.com/help/vnt/ug/transmitperiodic.html
https://www.mathworks.com/help/vnt/ug/replay.html

Stop Playback of Logged Messages

When the user presses the "Stop Replay" button on the UI the helper function
stopPlaybackOfLoggedCANData is called. In order to halt the playback of logged CAN message
data the CAN channel where the data is being replayed must be stopped. Once that is done the
periodic transmission of the "CruiseCtrlCmd" message can be re-enabled and the channel restarted
so that the user will once again be able to inject test stimulus signals to the Cruise Control algorithm
model interactively from the UI. As shown in the code fragment below,
stopPlaybackOfLoggedCANData first stops the channel, which halts the replay of the logged
message data. Logged message data is cleared from local buffers on the UI as well as the plots
displaying the signal data fed back from the Cruise Control algorithm model. Periodic transmission of
the "CruiseCtrlCmd" message is re-enabled, and the CAN channel restarted.

function stopPlaybackOfLoggedCANData(app)
 % Stop the playback CAN channel.
 stopCANChannel(app)

 % Flush the existing CAN messages stored for plotting.
 flushCANFbMsgQueue(app)

 % Clear the existing plots.
 cla(app.tspeedPlot)
 cla(app.engagedPlot)

 % Re-enable periodic transmission of CruiseCtrlCmd CAN message from UI controls.
 transmitPeriodic(app.canChannelObj, app.cruiseControlCmdMessage, 'On', 0.1);

 % Restart the CAN Channel from/To UI.
 startCANChannel(app)
end

stopPlaybackOfLoggedCANData uses the following Vehicle Network Toolbox functions:

• stop to stop the CAN channel to halt replay of the logged CAN message data.
• transmitPeriodic to re-enable periodic transmission of the command signals sent to the Cruise

Control algorithm model in the "CruiseCtrlCmd" message.
• start to re-start the CAN channel so the user can once again inject test stimulus signals to the

Cruise Control algorithm model interactively from the UI.

Add Virtual CAN Channel Communication to the Simulink Cruise Control Algorithm Model

In this step, we describe how Vehicle Network Toolbox Simulink blocks were used to add virtual CAN
communication capability to the Simulink Cruise Control algorithm model.

 Develop an App Designer App for a Simulink Model Using CAN

14-157

https://www.mathworks.com/help/vnt/ug/stop.html
https://www.mathworks.com/help/vnt/ug/transmitperiodic.html
https://www.mathworks.com/help/vnt/ug/start.html

This description will cover the following topics:

• Adding CAN message receive capability
• Adding CAN message transmit capability
• Pushing CAN channel configuration information from the UI to the Simulink model

Open the Cruise Control Algorithm Simulink Model

Run the helper functions to configure the workspace with needed data parameters and then open the
Cruise Control algorithm test harness model. With the Simulink model open, you can explore the
portions of the model explained in the sections below. Execute
helperPrepareTestBenchParameterData followed by helperConfigureAndOpenTestBench.

Add CAN Message Receive Capability

For the Cruise Control algorithm Simulink model to receive CAN data from the test UI requires a
block to connect the Simulink model to a specific CAN device, a block to receive CAN messages from
the selected device, and a block to unpack the data payload of the messages received into individual
signals. To accomplish this, an "Inputs" subsystem is added to the Cruise Control algorithm Simulink
model. The "Inputs" subsystem uses Vehicle Network Toolbox CAN Configuration, CAN Receive, and
CAN Unpack blocks interconnected as shown in the screen shot below.

The CAN Configuration Block allows the user to determine which of the available CAN devices and
channels to connect with the Simulink model. The CAN Receive block receives CAN messages from
the CAN device and channel selected in the CAN Configuration block. It also allows the user to
receive all messages on the bus or apply a filter to receive only select message(s). The CAN Unpack
block has been configured to read a user defined network database (.DBC) file. This allows the user to
determine the message name, message ID, and data payload to unpack signals with this block.
Simulink input ports are automatically added to the block for each signal defined in the message in
the network database file.

14 Vehicle Network Toolbox Examples

14-158

The "Inputs" subsystem of the Cruise Control algorithm Simulink model uses the following Vehicle
Network Toolbox Simulink blocks to receive CAN messages:

• CAN Configuration Block to select which CAN channel device to connect to the Simulink model.
• CAN Receive Block to receive the CAN messages from the CAN device selected in the CAN
Configuration block.

• CAN Unpack Block to unpack the payload of the received CAN message(s) into individual signals,
one for each data item defined in the message.

Add CAN Message Transmit Capability

For the Cruise Control algorithm Simulink model to transmit CAN data to the test UI requires a block
to connect the Simulink model to a specific CAN device, a block to pack Simulink signals into the data
payload of one or more CAN messages, and a block to transmit the CAN messages from the selected
device. To accomplish this, an "Outputs" subsystem is added to the Cruise Control algorithm Simulink
model. The "Outputs" subsystem uses Vehicle Network Toolbox CAN pack and CAN Transmit blocks
interconnected as shown in the screen shot below.

The CAN Pack block has been configured to read a user defined network database (.DBC) file. This
allows the user to determine the message name, message ID, and data payload to pack signal with
this block. Simulink output ports are automatically added to the block for each signal defined in the
message in the network database file. The CAN Transmit block will transmit the message assembled
by the Pack Block on the CAN channel and CAN device selected by the user with the Configuration
block. Note that a second CAN Configuration block is not required since the "Outputs" subsystem is
transmitting CAN messages on the same CAN channel and device used to receive CAN messages.

 Develop an App Designer App for a Simulink Model Using CAN

14-159

https://www.mathworks.com/help/vnt/ug/canconfiguration.html
https://www.mathworks.com/help/vnt/ug/canreceive.html
https://www.mathworks.com/help/vnt/ug/canunpack.html

The "Outputs" subsystem of the Cruise Control algorithm Simulink model uses the following Vehicle
Network Toolbox Simulink blocks to transmit CAN messages:

• CAN Pack Block to unpack the payload of the received CAN message(s) into individual signals, one
for each data item defined in the message.

• CAN Transmit Block to receive the CAN messages from the CAN device selected in the CAN
Configuration block.

Push CAN Channel Configuration from the UI to the Simulink Model

Because the user selects which of the available CAN devices and channels to use from the UI, this
information needs to be sent to the Cruise Control algorithm Simulink model to keep the CAN device
and channel configurations between the UI and the Simulink model in sync. In order to accomplish
this, the CAN device and channel information used by the Vehicle Network Toolbox "CAN
Configuration", "CAN Transmit" and "CAN Receive" blocks need to be configured programmatically
from the UI. Every time a user selects a CAN device and CAN channel from the UI "Channel
Configuration/Select CAN Channel" menu, the helper function
updateModelWithSelectedCANChannel is called. As shown in the code fragment below,
updateModelWithSelectedCANChannel finds the block path for the "CAN Configuration", "CAN
Transmit", and "CAN Receive" blocks within the Cruise Control algorithm Simulink model. Using
set_param commands, the "Device", "DeviceMenu", and "ObjConstructor" block properties for each of
these three blocks are set to the corresponding properties from the CAN device and CAN channel
selected by the user.

function updateModelWithSelectedCANChannel(app, index)
 % Check to see if we are using a virtual CAN channel and whether the model is loaded.
 if app.canChannelInfo.DeviceModel(index) == "Virtual" && bdIsLoaded(app.mdl)
 % Using a virtual channel.

 % Find path to CAN configuration block.
 canConfigPath = find_system(app.mdl,'Variants', 'AllVariants', 'LookUnderMasks', 'all',...
 'FollowLInks', 'on', 'Name', 'CAN Configuration');

14 Vehicle Network Toolbox Examples

14-160

https://www.mathworks.com/help/vnt/ug/canpack.html
https://www.mathworks.com/help/vnt/ug/cantransmit.html

 % Find path to CAN transmit block.
 canTransmitPath = find_system(app.mdl,'Variants', 'AllVariants', 'LookUnderMasks', 'all',...
 'FollowLInks', 'on', 'Name', 'CAN Transmit');

 % Find path to CAN receive block.
 canReceivePath = find_system(app.mdl,'Variants', 'AllVariants', 'LookUnderMasks', 'all',...
 'FollowLInks', 'on', 'Name', 'CAN Receive');

 % Push the selected CAN channel into the simulation model CAN Configuration block.
 set_param(canConfigPath{1}, 'Device', app.canChannelDeviceSelected);
 set_param(canConfigPath{1}, 'DeviceMenu', app.canChannelDeviceSelected);
 set_param(canConfigPath{1}, 'ObjConstructor', app.canChannelConstructorSelected);

 % Push the selected CAN channel into the simulation model CAN Receive block.
 set_param(canReceivePath{1}, 'Device', app.canChannelDeviceSelected);
 set_param(canReceivePath{1}, 'DeviceMenu', app.canChannelDeviceSelected);
 set_param(canReceivePath{1}, 'ObjConstructor', app.canChannelConstructorSelected);

 % Push the selected CAN channel into the simulation model CAN Transmit block.
 set_param(canTransmitPath{1}, 'Device', app.canChannelDeviceSelected);
 set_param(canTransmitPath{1}, 'DeviceMenu', app.canChannelDeviceSelected);
 set_param(canTransmitPath{1}, 'ObjConstructor', app.canChannelConstructorSelected);
 end
end

Use the UI and Model Together

With both the model and UI open, you can explore interacting with the model in the UI. Press "Start
Sim" to put the model and UI online. Experiment with the "Driver Inputs" and "Calibrations" sections
of the UI to control the model and actuate the cruise control algorithm. You will see the cruise control
engagement and speed values plotted in the UI. You can also use the logging and replay features
described previously via the UI controls.

Creating a UI in this manner, gives you a powerful and flexible test interface customizable to your
application. It is valuable when debugging and optimizing your algorithm in simulation. By changing
the selected CAN device from virtual channels to physical channels, you can continue to use the UI to
interact with the algorithm running in a rapid prototyping platform or target controller.

 Develop an App Designer App for a Simulink Model Using CAN

14-161

Programmatically Build Simulink Models for CAN
Communication

This example shows how to programmatically construct a Simulink model to introduce CAN or CAN
FD communication using a CAN DBC-file. With the add_block and set_param functions of Simulink,
one can add and fully configure Vehicle Network Toolbox blocks to add network communication to a
basic algorithm. The DBC-file contains the CAN messages and signal details. The primary focus is to
programmatically configure CAN and CAN FD Pack and Unpack block parameters. This can
significantly increase model construction efficiency.

Algorithm Model

The example model AlgorithmModel.slx contains a subsystem block called "Algorithm". This block
represents any given application algorithm developed in Simulink. A Gain block with value of 2 is
inside this subsystem for demonstration purposes. This subsystem has a CAN signal input named
"In1". This input value is scaled by the gain value. The scaled value is given as the output of this
subsystem named "Out1". For experimentation, the gain value can be changed and the Gain block can
be replaced by a different algorithm.

CAN Database File Access

You can access the contents of CAN DBC-files with the canDatabase function. Through this function,
details about network nodes, messages, and signals are available.

db = canDatabase("CANBus.dbc")

db =
 Database with properties:

14 Vehicle Network Toolbox Examples

14-162

https://www.mathworks.com/help/simulink/slref/add_block.html
https://www.mathworks.com/help/simulink/slref/set_param.html
https://www.mathworks.com/help/vnt/ug/canpack.html
https://www.mathworks.com/help/vnt/ug/canunpack.html
https://www.mathworks.com/help/simulink/slref/gain.html
https://www.mathworks.com/help/vnt/ug/candatabase.html

 Name: 'CANBus'
 Path: 'C:\Users\jpyle\Documents\MATLAB\Examples\vnt-ex60686316\CANBus.dbc'
 Nodes: {'ECU'}
 NodeInfo: [1×1 struct]
 Messages: {2×1 cell}
 MessageInfo: [2×1 struct]
 Attributes: {}
 AttributeInfo: [0×0 struct]
 UserData: []

A node "ECU" is defined in the example CAN DBC-file as shown below.

node = nodeInfo(db,"ECU")

node = struct with fields:
 Name: 'ECU'
 Comment: ''
 Attributes: {}
 AttributeInfo: [0×0 struct]

The node receives a CAN message "AlgInput" containing a signal "InitialValue". The signal
"InitialValue" is the input to the algorithm.

messageInfo(db,"AlgInput")

ans = struct with fields:
 Name: 'AlgInput'
 ProtocolMode: 'CAN'
 Comment: ''
 ID: 100
 Extended: 0
 J1939: []
 Length: 1
 DLC: 1
 BRS: 0
 Signals: {'InitialValue'}
 SignalInfo: [1×1 struct]
 TxNodes: {0×1 cell}
 Attributes: {}
 AttributeInfo: [0×0 struct]

The node transmits a CAN message "AlgOutput" containing a signal "ScaledValue". The signal
"ScaledValue" is the output of the algorithm.

messageInfo(db,"AlgOutput")

ans = struct with fields:
 Name: 'AlgOutput'
 ProtocolMode: 'CAN'
 Comment: ''
 ID: 200
 Extended: 0
 J1939: []
 Length: 2
 DLC: 2

 Programmatically Build Simulink Models for CAN Communication

14-163

 BRS: 0
 Signals: {'ScaledValue'}
 SignalInfo: [1×1 struct]
 TxNodes: {'ECU'}
 Attributes: {}
 AttributeInfo: [0×0 struct]

Programmatically Build the Model

Open the Example Model

Open the example model to be configured.

open AlgorithmModel

Add and Configure CAN Configuration Block

Add and position a CAN Configuration block in the model.

add_block("canlib/CAN Configuration","AlgorithmModel/CAN Configuration")
set_param("AlgorithmModel/CAN Configuration","position",[50,330,250,410])

Set the "Device" parameter to have the model use the MathWorks virtual CAN device.

set_param("AlgorithmModel/CAN Configuration","Device","MathWorks Virtual 1 (Channel 1)")

Add and Configure CAN Receive Block

Add and position a CAN Receive block in the model.

add_block("canlib/CAN Receive","AlgorithmModel/CAN Receive")
set_param("AlgorithmModel/CAN Receive","position",[50,200,250,280])

Add a Terminator block and position it. This is used to connect the function port of the CAN Receive
block. In this example, simple message reception is performed. In general, placing a CAN Receive
inside a Function-Call Subsystem is the preferred approach to modeling with CAN blocks.

add_block("simulink/Sinks/Terminator","AlgorithmModel/Terminator")
set_param("AlgorithmModel/Terminator","position",[310,210,330,230])

Set the "Device" parameter to have the model use the MathWorks virtual CAN device.

set_param("AlgorithmModel/CAN Receive","Device","MathWorks Virtual 1 (Channel 1)")

Add and Configure CAN Unpack Block

Add and position a CAN Unpack block in the model. By default, the block is in "Raw Data" mode.

add_block("canlib/CAN Unpack","AlgorithmModel/CAN Unpack")
set_param("AlgorithmModel/CAN Unpack","position",[350,220,600,300])

Set the following parameters in the CAN Unpack block in a single function call:

• DataFormat
• CANdbFile
• MsgList

set_param("AlgorithmModel/CAN Unpack","DataFormat","CANdb specified signals","CANdbFile",db.Path,"MsgList","AlgInput")

14 Vehicle Network Toolbox Examples

14-164

https://www.mathworks.com/help/vnt/ug/canconfiguration.html
https://www.mathworks.com/help/vnt/ug/canreceive.html
https://www.mathworks.com/help/simulink/slref/terminator.html
https://www.mathworks.com/help/vnt/ug/canreceive.html
https://www.mathworks.com/help/vnt/ug/canreceive.html
https://www.mathworks.com/help/simulink/ug/using-function-call-subsystems.html
https://www.mathworks.com/help/vnt/ug/canunpack.html
https://www.mathworks.com/help/vnt/ug/canunpack.html

If the "DataFormat" and "CANdbFile" parameters are already set on a block, the chosen message is
changeable by only including the "MsgList" parameter.

Add and Configure CAN Pack Block

Add and position a CAN Pack block in the model.

add_block("canlib/CAN Pack","AlgorithmModel/CAN Pack")
set_param("AlgorithmModel/CAN Pack","position",[1000,220,1250,300])

Set the following parameters in the CAN Pack block in a single function call:

• DataFormat
• CANdbFile
• MsgList

set_param("AlgorithmModel/CAN Pack","DataFormat","CANdb specified signals","CANdbFile",db.Path,"MsgList","AlgOutput")

Add and Configure CAN Transmit Block

Add and position a CAN Transmit block in the model.

add_block("canlib/CAN Transmit","AlgorithmModel/CAN Transmit")
set_param("AlgorithmModel/CAN Transmit","position",[1350,220,1550,300])

Set the "Device" parameter to have the model use the MathWorks virtual CAN device. Also, periodic
transmission is enabled with the default timing.

set_param("AlgorithmModel/CAN Transmit","Device","MathWorks Virtual 1 (Channel 1)")
set_param("AlgorithmModel/CAN Transmit", "EnablePeriodicTransmit", "on")

Make Connections Between the Blocks

The CAN blocks and the algorithm block added in the model must now be connected. The port co-
ordinates for all CAN blocks are required.

canRxPort = get_param("AlgorithmModel/CAN Receive","PortConnectivity");
canUnpackPort = get_param("AlgorithmModel/CAN Unpack","PortConnectivity");
subSystemPort = get_param("AlgorithmModel/Subsystem","PortConnectivity");
canPackPort = get_param("AlgorithmModel/CAN Pack","PortConnectivity");
canTxPort = get_param("AlgorithmModel/CAN Transmit","PortConnectivity");
terminatorPort = get_param("AlgorithmModel/Terminator","PortConnectivity");

[canRxPortFunc,canRxPortMsg] = canRxPort.Position;
[canUnpackPortIn,canUnpackPortOut] = canUnpackPort.Position;
[subSystemPortIn,subSystemPortOut] = subSystemPort.Position;
[canPackPortIn,canPackPortOut] = canPackPort.Position;
canTxPortMsg = canTxPort.Position;
terminatorPortIn = terminatorPort.Position;

Add lines to connect all of the blocks in the appropriate order.

add_line("AlgorithmModel",[canRxPortMsg ; canUnpackPortIn])
add_line("AlgorithmModel",[canUnpackPortOut ; subSystemPortIn])
add_line("AlgorithmModel",[subSystemPortOut ; canPackPortIn])
add_line("AlgorithmModel",[canPackPortOut ; canTxPortMsg])
add_line("AlgorithmModel",[canRxPortFunc ; terminatorPortIn])

 Programmatically Build Simulink Models for CAN Communication

14-165

https://www.mathworks.com/help/vnt/ug/canpack.html
https://www.mathworks.com/help/vnt/ug/canpack.html
https://www.mathworks.com/help/vnt/ug/cantransmit.html

Completed Model

This is how the model looks after construction and configuration.

Test the Built Model

Configure a CAN Channel in MATLAB for Communication with the Algorithm Model

Create a CAN channel in MATLAB using channel 2 of the MathWorks virtual CAN device. It will
communicate with the CAN channel in the model. Also, attach the CAN database to the MATLAB
channel to have it automatically decode incoming CAN data.

canCh = canChannel("MathWorks","Virtual 1",2);
canCh.Database = db;

For transmission from MATLAB to the model, use the CAN database to prepare a CAN message as
input to the algorithm.

algInputMsg = canMessage(canCh.Database,"AlgInput");

Run the Algorithm Model

Assign the simulation time and start the simulation

set_param("AlgorithmModel","StopTime","inf")
set_param("AlgorithmModel","SimulationCommand","start")

Pause until the simulation is fully started.

while strcmp(get_param("AlgorithmModel","SimulationStatus"),"stopped")
end

Run the MATLAB Code

Start the MATLAB CAN channel.

start(canCh);

Transmit multiple CAN messages with different signal data as input to the model.

for value = 1:5
 algInputMsg.Signals.InitialValue = value*value;
 transmit(canCh,algInputMsg)
 pause(1)
end

Receive all messages from the bus. Note the instances of the "AlgInput" and "AlgOutput" messages,
their timing, and signal values.

14 Vehicle Network Toolbox Examples

14-166

msg = receive(canCh,Inf,"OutputFormat","timetable")

msg=10×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ ___ ________ _____________ ___________ ______ ____________ _____ ______

 0.009728 sec 100 false {'AlgInput' } {[1]} 1 {1×1 struct} false false
 0.15737 sec 200 false {'AlgOutput'} {1×2 uint8} 2 {1×1 struct} false false
 1.0121 sec 100 false {'AlgInput' } {[4]} 1 {1×1 struct} false false
 1.1574 sec 200 false {'AlgOutput'} {1×2 uint8} 2 {1×1 struct} false false
 2.0146 sec 100 false {'AlgInput' } {[9]} 1 {1×1 struct} false false
 2.1574 sec 200 false {'AlgOutput'} {1×2 uint8} 2 {1×1 struct} false false
 3.0177 sec 100 false {'AlgInput' } {[16]} 1 {1×1 struct} false false
 3.1574 sec 200 false {'AlgOutput'} {1×2 uint8} 2 {1×1 struct} false false
 4.0219 sec 100 false {'AlgInput' } {[25]} 1 {1×1 struct} false false
 4.1574 sec 200 false {'AlgOutput'} {1×2 uint8} 2 {1×1 struct} false false

The canSignalTimetable function provides an efficient way to separate and organize the signal
values of CAN messages into individual timetables for each.

signalTimeTable = canSignalTimetable(msg)

signalTimeTable = struct with fields:
 AlgInput: [5×1 timetable]
 AlgOutput: [5×1 timetable]

signalTimeTable.AlgInput

ans=5×1 timetable
 Time InitialValue
 ____________ ____________

 0.009728 sec 1
 1.0121 sec 4
 2.0146 sec 9
 3.0177 sec 16
 4.0219 sec 25

signalTimeTable.AlgOutput

ans=5×1 timetable
 Time ScaledValue
 ___________ ___________

 0.15737 sec 2
 1.1574 sec 8
 2.1574 sec 18
 3.1574 sec 32
 4.1574 sec 50

Stop the CAN channel.

stop(canCh)

 Programmatically Build Simulink Models for CAN Communication

14-167

https://www.mathworks.com/help/vnt/ug/cansignaltimetable.html

Stop the Algorithm Model

set_param("AlgorithmModel","SimulationCommand","stop")

Plot the Signal Data

Plot the initial and scaled signal values of the CAN messages against the timestamps as they occurred
on the virtual bus. Note the change in values as transmitted by MATLAB and the scaling of the data
as performed by the model.

plot(signalTimeTable.AlgInput.Time,signalTimeTable.AlgInput.InitialValue,"Marker","square","MarkerIndices",1:5)
hold on
plot(signalTimeTable.AlgOutput.Time,signalTimeTable.AlgOutput.ScaledValue,"Marker","square","MarkerIndices",1:5)
hold off
xlabel("TimeStamp");
ylabel("CAN Signal Value");
legend("Initial Value","Scaled Value","Location","northeastoutside");
legend("boxoff");

14 Vehicle Network Toolbox Examples

14-168

Class-Based Unit Testing of Automotive Algorithms via CAN
This example shows you how to validate the output of a cruise control algorithm using the Vehicle
Network Toolbox and MATLAB class-based unit testing framework.

It uses the MATLAB unit test-class tCruiseControlAlgorithmVerifier.m to provide input
commands via Controller Area Network (CAN) to a Simulink model of a cruise control algorithm to
trigger the functional behavior of the algorithm, and then receives feedback from the model through
CAN and validates the expected behavior of the algorithm. It also generates a PDF report of the test
results, which can be used for analysis. For more information on how to write the test-class, see the
tCruiseControlAlgorithmVerifier.m file. The dialog in that class helps you understand the
method of setting up a test-class and what each individual test does.

This example uses MathWorks virtual CAN Channels to communicate with the algorithm.

Simulink Model Overview

The cruise control algorithm has a Virtual CAN Inputs block, which houses the setup of the CAN
channel using the CAN Configuration block, and receives the message commanded from the MATLAB
test-class using the CAN Receive block. It then uses the CAN Unpack block to separate the individual
signals from the received CAN message, which are then converted into their appropriate data types
and transmitted to the actual cruise control algorithm.

The Cruise Control Algorithm block houses the Cruise Control Algorithm State Machine, which is a
Stateflow chart. This algorithm works based on the inputs received from the Virtual CAN Inputs block
and is set-up to trigger when the input conditions have reached a certain condition. The outputs of
the Stateflow chart are the expected vehicle cruising speed, and algorithm engagement state.

The Virtual CAN Outputs block uses a CAN Pack block to load individual signals into a single CAN
message, which are then transmitted onto the CAN bus using the CAN Transmit block. This feedback
message is used for verification in the MATLAB test-class.

 Class-Based Unit Testing of Automotive Algorithms via CAN

14-169

https://www.mathworks.com/help/vnt/
https://www.mathworks.com/help/vnt/
https://www.mathworks.com/help/matlab/class-based-unit-tests.html
https://www.mathworks.com/help/vnt/ug/canconfiguration.html
https://www.mathworks.com/help/vnt/ug/canreceive.html
https://www.mathworks.com/help/vnt/ug/canunpack.html
https://www.mathworks.com/help/vnt/ug/canpack.html
https://www.mathworks.com/help/vnt/ug/cantransmit.html

Create a Test Suite

Create a suite of test classes to run. In this example, the tCruiseControlAlgorithmVerifier.m
is the only test in the suite. You can add additional tests in the same test suite. The 1xN Test array
lists the number of tests, not the number of test-classes.

suite = testsuite("tCruiseControlAlgorithmVerifier")

suite =
 1x3 Test array with properties:

 Name
 ProcedureName
 TestClass
 BaseFolder
 Parameterization
 SharedTestFixtures
 Tags

Tests Include:
 0 Parameterizations, 0 Shared Test Fixture Classes, 0 Tags.

Create a Test Runner

Create a test runner to execute a set of tests in the test suite. This defines the runner with no special
plugins.

14 Vehicle Network Toolbox Examples

14-170

https://www.mathworks.com/help/matlab/ref/testsuite.html
https://www.mathworks.com/help/matlab/ref/matlab.unittest.testrunner-class.html

runner = matlab.unittest.TestRunner.withNoPlugins

runner =
 TestRunner with properties:

 ArtifactsRootFolder: "C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23"
 PrebuiltFixtures: [1x0 matlab.unittest.fixtures.Fixture]

Create a PDF Report Output

Set-up the name of the PDF file in which you want your output to be captured.

pdfFile = "CruiseControlAlgorithmTestReport.pdf"

pdfFile =
"CruiseControlAlgorithmTestReport.pdf"

Add a PDF creating plugin to your test runner. Firstly, construct the plugin.

plugin = matlab.unittest.plugins.TestReportPlugin.producingPDF(pdfFile)

plugin =
 PDFTestReportPlugin with properties:

 IncludeCommandWindowText: 0
 IncludePassingDiagnostics: 0
 LoggingLevel: Terse
 PageOrientation: 'portrait'

Associate this plugin with the test runner to generate the PDF report in the working directory.

runner.addPlugin(plugin)

Run Tests

Run the test suite using the test runner.

result = runner.run(suite)

Generating test report. Please wait.
 Preparing content for the test report.

 Adding content to the test report.
 Writing test report to file.
Test report has been saved to:
 C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex21299704\CruiseControlAlgorithmTestReport.pdf

result =
 1x3 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:

 Class-Based Unit Testing of Automotive Algorithms via CAN

14-171

 2 Passed, 1 Failed, 0 Incomplete.
 123.9442 seconds testing time.

Analyze the PDF Report

Open the PDF file created with the defined name. The default setting creates it in the current
working directory. There are two things to observe in the PDF report:

Overall Result and Result Pie Chart

The overall result states the final outcome based on whether all the tests passed or not. The pie chart
shows how many tests passed and failed out of the total number of tests defined.

Failure Summary Details

The failure summary shows which test failed and for what reason.

14 Vehicle Network Toolbox Examples

14-172

Clicking the details tab on the right hand side of the failure name provides a detailed reason for
failure, along with the diagnostic message you configured in the tests.

 Class-Based Unit Testing of Automotive Algorithms via CAN

14-173

Decode CAN Data from BLF-Files
This example shows you how to import and decode CAN data from BLF-files in MATLAB for analysis.
The BLF-file used in this example was generated from Vector CANoe™ using the "CAN - General
System Configuration (CAN)" sample. This example also uses the CAN database file,
PowerTrain_BLF.dbc, provided with the Vector sample configuration.

Open the DBC-File

Open the database file describing the source CAN network using the canDatabase function.

canDB = canDatabase("PowerTrain_BLF.dbc")

canDB =
 Database with properties:

 Name: 'PowerTrain_BLF'
 Path: 'C:\Users\michellw\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex06202590\PowerTrain_BLF.dbc'
 Nodes: {2×1 cell}
 NodeInfo: [2×1 struct]
 Messages: {12×1 cell}
 MessageInfo: [12×1 struct]
 Attributes: {11×1 cell}
 AttributeInfo: [11×1 struct]
 UserData: []

Investigate the BLF-File

Retrieve and view information about the BLF-File. The blfinfo function parses general information
about the format and contents of the Vector Binary Logging Format BLF-file and returns the
information as a structure.

binf = blfinfo("Logging_BLF.blf")

binf = struct with fields:
 Name: "Logging_BLF.blf"
 Path: "C:\Users\michellw\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex06202590\Logging_BLF.blf"
 Application: "CANoe"
 ApplicationVersion: "11.0.55"
 Objects: 43344
 StartTime: 01-Jul-2020 14:47:34.427
 EndTime: 01-Jul-2020 14:48:33.487
 ChannelList: [2×3 table]

binf.ChannelList

ans=2×3 table
 ChannelID Protocol Objects
 _________ ________ _______

 1 "CAN" 8801
 2 "CAN" 7575

14 Vehicle Network Toolbox Examples

14-174

https://www.mathworks.com/help/vnt/ug/candatabase.html
https://www.mathworks.com/help/vnt/ug/blfinfo.html

Read Data from BLF-File

The data of interest was logged from the powertrain bus which is stored in channel 2 of the BLF-file.
Read the CAN data using the blfread function. You can also provide the DBC-file to the function call
which will enable message name lookup and signal value decoding.

blfData = blfread("Logging_BLF.blf", 2, "Database", canDB)

blfData=7575×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 __________ ____ ________ __________________ ______________________________ ______ ____________ _____ ______

 2.2601 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1×1 struct} false false
 2.2801 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1×1 struct} false false
 2.3002 sec 100 false {'EngineData' } {[238 2 25 1 0 0 238 2]} 8 {1×1 struct} false false
 2.3005 sec 102 false {'EngineDataIEEE'} {[0 128 59 68 0 0 0 0]} 8 {1×1 struct} false false
 2.3006 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1×1 struct} false false
 2.3008 sec 201 false {'ABSdata' } {[0 0 0 0 172 38]} 6 {1×1 struct} false false
 2.3009 sec 1020 false {'GearBoxInfo' } {[1]} 1 {1×1 struct} false false
 2.3201 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1×1 struct} false false
 2.3401 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1×1 struct} false false
 2.3502 sec 100 false {'EngineData' } {[4 0 25 2 119 1 238 2]} 8 {1×1 struct} false false
 2.3505 sec 102 false {'EngineDataIEEE'} {[53 127 119 64 0 128 187 67]} 8 {1×1 struct} false false
 2.3507 sec 201 false {'ABSdata' } {[0 0 0 0 35 40]} 6 {1×1 struct} false false
 2.3508 sec 1020 false {'GearBoxInfo' } {[1]} 1 {1×1 struct} false false
 2.3601 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1×1 struct} false false
 2.3801 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1×1 struct} false false
 2.4002 sec 100 false {'EngineData' } {[10 0 25 3 119 1 238 2]} 8 {1×1 struct} false false
 ⋮

View signals from an "EngineData" message.

blfData.Signals{3}

ans = struct with fields:
 PetrolLevel: 1
 EngPower: 7.5000
 EngForce: 0
 IdleRunning: 0
 EngTemp: 0
 EngSpeed: 750

Repackage and Visualize Signal Values of Interest

Use the canSignalTimetable function to repackage signal data from each unique message on the
bus into a signal timetable. This example creates three individual signal timetables for the three
messages of interest, "ABSdata", "EngineData" and "GearBoxInfo", from the CAN message timetable.

signalTimetable1 = canSignalTimetable(blfData, "ABSdata")

signalTimetable1=1136×4 timetable
 Time AccelerationForce Diagnostics GearLock CarSpeed
 __________ _________________ ___________ ________ ________

 2.3008 sec -100 0 0 0
 2.3507 sec 275 0 0 0

 Decode CAN Data from BLF-Files

14-175

https://www.mathworks.com/help/vnt/ug/blfread.html
https://www.mathworks.com/help/vnt/ug/cansignaltimetable.html

 2.4008 sec 275 0 0 0
 2.4507 sec 275 0 0 0
 2.5008 sec 275 0 0 0
 2.5507 sec 275 0 0 0
 2.6008 sec 275 0 0 0
 2.6507 sec 275 0 0 0
 2.7008 sec 350 0 0 0
 2.7507 sec 425 0 0 0.5
 2.8008 sec 425 0 0 0.5
 2.8507 sec 500 0 0 0.5
 2.9008 sec 575 0 0 0.5
 2.9507 sec 575 0 0 0.5
 3.0008 sec 650 0 0 0.5
 3.0507 sec 725 0 0 0.5
 ⋮

signalTimetable2 = canSignalTimetable(blfData, "EngineData")

signalTimetable2=1136×6 timetable
 Time PetrolLevel EngPower EngForce IdleRunning EngTemp EngSpeed
 __________ ___________ ________ ________ ___________ _______ ________

 2.3002 sec 1 7.5 0 0 0 750
 2.3502 sec 2 7.5 375 0 0 4
 2.4002 sec 3 7.5 375 0 0 10
 2.4502 sec 4 7.5 375 0 0 17
 2.5002 sec 5 7.5 375 0 0 23
 2.5502 sec 6 7.5 375 0 0 30
 2.6002 sec 7 7.5 375 0 0 36
 2.6502 sec 8 7.5 375 0 0 43
 2.7002 sec 9 9 450 0 0 50
 2.7502 sec 10 10.5 525 0 0 59
 2.8002 sec 10 10.5 525 0 0 69
 2.8502 sec 11 12 600 0 0 80
 2.9002 sec 11 13.5 675 0 0 92
 2.9502 sec 12 13.5 675 0 0 106
 3.0002 sec 13 15 750 0 0 121
 3.0502 sec 13 16.5 825 0 0 136
 ⋮

signalTimetable3 = canSignalTimetable(blfData, "GearBoxInfo")

signalTimetable3=1136×3 timetable
 Time EcoMode ShiftRequest Gear
 __________ _______ ____________ ____

 2.3009 sec 0 0 1
 2.3508 sec 0 0 1
 2.4009 sec 0 0 1
 2.4508 sec 0 0 1
 2.5009 sec 0 0 1
 2.5508 sec 0 0 1
 2.6009 sec 0 0 1
 2.6508 sec 0 0 1
 2.7009 sec 0 0 1
 2.7508 sec 0 0 1
 2.8009 sec 0 0 1

14 Vehicle Network Toolbox Examples

14-176

 2.8508 sec 0 0 1
 2.9009 sec 0 0 1
 2.9508 sec 0 0 1
 3.0009 sec 0 0 1
 3.0508 sec 0 0 1
 ⋮

To visualize the signals of interest, columns from the signal timetables can be plotted over time for
further analysis.

subplot(3, 1, 1)
plot(signalTimetable1.Time, signalTimetable1.CarSpeed, "r")
title("{\itCarSpeed} Signal from {\itABSdata} Message", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Car Speed")
subplot(3, 1, 2)
plot(signalTimetable2.Time, signalTimetable2.EngSpeed, "b")
title("{\itEngSpeed} Signal from {\itEngData} Message", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Engine Speed")
subplot(3, 1, 3)
plot(signalTimetable3.Time, signalTimetable3.Gear, "y")
title("{\itGear} Signal from {\itGearBoxInfo} Message", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Gear")

 Decode CAN Data from BLF-Files

14-177

Decode CAN Data from MDF-Files
This example shows you how to import and decode CAN data from MDF-files in MATLAB for analysis.
The MDF-file used in this example was generated from Vector CANoe™ using the "CAN - General
System Configuration (CAN)" sample. This example also uses the CAN database file,
PowerTrain.dbc, provided with the Vector sample configuration.

Open the MDF-File

Open access to the MDF-file using the mdf function.

m = mdf("Logging_MDF.mf4")

m =
 MDF with properties:

 File Details
 Name: 'Logging_MDF.mf4'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex42187575\Logging_MDF.mf4'
 Author: ''
 Department: ''
 Project: ''
 Subject: ''
 Comment: ''
 Version: '4.10'
 DataSize: 1542223
 InitialTimestamp: 2020-06-25 20:41:13.133000000

 Creator Details
 ProgramIdentifier: 'MDF4Lib'
 Creator: [1x1 struct]

 File Contents
 Attachment: [5x1 struct]
 ChannelNames: {62x1 cell}
 ChannelGroup: [1x62 struct]

 Options
 Conversion: Numeric

Identify CAN Data Frames

According to the ASAM MDF associated standard for bus logging, the event types defined for a CAN
bus system can be "CAN_DataFrame", "CAN_RemoteFrame", "CAN_ErrorFrame" or
"CAN_OverloadFrame". This example focuses on extracting the CAN data frames, so the bus logging
standard will be discussed using "CAN_DataFrame" event type as example. Additionally, note that a
standard CAN data frame has up to 8 bytes for its payload and is used to transfer signal values.

The standard specifies that the channel names of the event structure should be prefixed by the event
type name, for instance, "CAN_DataFrame". Typically a dot is used as separator character to specify
the member channels, for instance, "CAN_DataFrame.ID" or "CAN_DataFrame.DataLength".

Use the channelList function to filter on channel names exactly matching "CAN_DataFrame". A
table with information on matched channels is returned.

channelList(m, "CAN_DataFrame", "ExactMatch", true)

14 Vehicle Network Toolbox Examples

14-178

https://www.mathworks.com/help/vnt/ug/mdf.html
https://www.asam.net/standards/detail/mdf/
https://www.mathworks.com/help/vnt/ug/channellist.html

ans=2×9 table
 ChannelName ChannelGroupNumber ChannelGroupNumSamples ChannelGroupAcquisitionName ChannelGroupComment ChannelDisplayName ChannelUnit ChannelComment ChannelDescription
 _______________ __________________ ______________________ ___________________________ ___________________ __________________ ___________ ______________ __________________

 "CAN_DataFrame" 17 8889 CAN1 <undefined> "" <undefined> bus event data "bus event data"
 "CAN_DataFrame" 29 7648 CAN2 <undefined> "" <undefined> bus event data "bus event data"

The powetrain data of interest was logged from the CAN 2 network. The channelList output above
shows that the data from CAN 2 network has been stored in channel group 29 of the MDF-file. View
the channel group details using the ChannelGroup property.

m.ChannelGroup(29)

ans = struct with fields:
 AcquisitionName: 'CAN2'
 Comment: ''
 NumSamples: 7648
 DataSize: 206496
 Sorted: 1
 Channel: [14x1 struct]

Within a channel group, details about each channel are stored. View details about channel 2 within
channel group 29.

m.ChannelGroup(29).Channel(2)

ans = struct with fields:
 Name: 'CAN_DataFrame.Flags'
 DisplayName: 'Flags'
 ExtendedNamePrefix: 'CAN2'
 Description: 'Combination of bit flags for the message.'
 Comment: 'Combination of bit flags for the message.'
 Unit: ''
 Type: FixedLength
 DataType: IntegerUnsignedLittleEndian
 NumBits: 8
 ComponentType: StructureMember
 CompositionType: None
 ConversionType: None

Read CAN Data Frames From the MDF-File

Read all data from all channels in channel group 29 into a timetable using the read function. The
timetable is structured to follow the ASAM MDF standard logging format. Every row represents one
raw CAN frame from the bus, while each column represents a channel within the specified channel
group. The channels, such as "CAN_DataFrame.Dir", are named to follow the bus logging standard.
However, because timetable column names must be valid MATLAB variable names, they may not be
identical to the channel names. Most unsupported characters are converted to underscores. Since "."
is not supported in a MATLAB variable name, "CAN_DataFrame.Dir" is altered to
"CAN_DataFrame_Dir" in the table.

canData = read(m, 29, m.ChannelNames{29})

canData=7648×14 timetable
 Time CAN_DataFrame_BusChannel CAN_DataFrame_Flags CAN_DataFrame_Dir CAN_DataFrame_SingleWire CAN_DataFrame_WakeUp CAN_DataFrame_ID CAN_DataFrame_IDE CAN_DataFrame_FrameDuration CAN_DataFrame_BitCount CAN_DataFrame_DLC CAN_DataFrame_DataLength CAN_DataFrame_DataBytes CAN_DataFrame t

 Decode CAN Data from MDF-Files

14-179

https://www.mathworks.com/help/vnt/ug/read.html

 __________ ________________________ ___________________ _________________ ________________________ ____________________ ________________ _________________ ___________________________ ______________________ _________________ ________________________ ______________________________ __ ______

 2.2601 sec 2 1 1 0 0 103 0 128000 67 2 2 {[1 0]} {[1 2 103 0 0 0 1 0 0 0 8 0 0 0 0 244 1 0 67]} 2.2601
 2.2801 sec 2 1 1 0 0 103 0 128000 67 2 2 {[1 0]} {[1 2 103 0 0 0 1 0 0 0 6 0 0 0 0 244 1 0 67]} 2.2801
 2.3002 sec 2 1 1 0 0 100 0 232000 119 8 8 {[238 2 25 1 0 0 238 2]} {[1 8 100 0 0 0 238 2 25 1 0 0 238 2 64 138 3 0 119]} 2.3002
 2.3005 sec 2 1 1 0 0 102 0 240000 123 8 8 {[0 128 59 68 0 0 0 0]} {[1 8 102 0 0 0 0 128 59 68 0 0 0 0 128 169 3 0 123]} 2.3005
 2.3006 sec 2 1 1 0 0 103 0 128000 67 2 2 {[1 0]} {[1 2 103 0 0 0 1 0 0 0 6 0 0 0 0 244 1 0 67]} 2.3006
 2.3008 sec 2 1 1 0 0 201 0 196000 101 6 6 {[0 0 0 0 172 38]} {[1 6 201 0 0 0 0 0 0 0 172 38 0 0 160 253 2 0 101]} 2.3008
 2.3009 sec 2 1 1 0 0 1020 0 110000 58 1 1 {[1]} {[1 1 252 3 0 0 1 0 0 0 8 0 0 0 176 173 1 0 58]} 2.3009
 2.3201 sec 2 1 1 0 0 103 0 128000 67 2 2 {[1 0]} {[1 2 103 0 0 0 1 0 0 0 6 0 0 0 0 244 1 0 67]} 2.3201
 2.3401 sec 2 1 1 0 0 103 0 128000 67 2 2 {[1 0]} {[1 2 103 0 0 0 1 0 0 0 6 0 0 0 0 244 1 0 67]} 2.3401
 2.3502 sec 2 1 1 0 0 100 0 234000 120 8 8 {[4 0 25 2 119 1 238 2]} {[1 8 100 0 0 0 4 0 25 2 119 1 238 2 16 146 3 0 120]} 2.3502
 2.3505 sec 2 1 1 0 0 102 0 228000 117 8 8 {[53 127 119 64 0 128 187 67]} {[1 8 102 0 0 0 53 127 119 64 0 128 187 67 160 122 3 0 117]} 2.3505
 2.3507 sec 2 1 1 0 0 201 0 198000 102 6 6 {[0 0 0 0 35 40]} {[1 6 201 0 0 0 0 0 0 0 35 40 0 0 112 5 3 0 102]} 2.3507
 2.3508 sec 2 1 1 0 0 1020 0 110000 58 1 1 {[1]} {[1 1 252 3 0 0 1 0 0 0 9 0 0 0 176 173 1 0 58]} 2.3508
 2.3601 sec 2 1 1 0 0 103 0 128000 67 2 2 {[1 0]} {[1 2 103 0 0 0 1 0 0 0 9 0 0 0 0 244 1 0 67]} 2.3601
 2.3801 sec 2 1 1 0 0 103 0 128000 67 2 2 {[1 0]} {[1 2 103 0 0 0 1 0 0 0 6 0 0 0 0 244 1 0 67]} 2.3801
 2.4002 sec 2 1 1 0 0 100 0 234000 120 8 8 {[10 0 25 3 119 1 238 2]} {[1 8 100 0 0 0 10 0 25 3 119 1 238 2 16 146 3 0 120]} 2.4002
 ⋮

Decode CAN Messages Using the DBC-File

Open the database file using the canDatabase function.

canDB = canDatabase("PowerTrain_MDF.dbc")

canDB =
 Database with properties:

 Name: 'PowerTrain_MDF'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex42187575\PowerTrain_MDF.dbc'
 Nodes: {2x1 cell}
 NodeInfo: [2x1 struct]
 Messages: {12x1 cell}
 MessageInfo: [12x1 struct]
 Attributes: {11x1 cell}
 AttributeInfo: [11x1 struct]
 UserData: []

The canMessageTimetable function uses the database to decode the message names and signals.
The timetable of ASAM standard logging format data is converted into a Vehicle Network Toolbox™
CAN message timetable.

msgTimetable = canMessageTimetable(canData, canDB)

msgTimetable=7648×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 __________ ____ ________ __________________ ______________________________ ______ ____________ _____ ______

 2.2601 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1x1 struct} false false
 2.2801 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1x1 struct} false false
 2.3002 sec 100 false {'EngineData' } {[238 2 25 1 0 0 238 2]} 8 {1x1 struct} false false
 2.3005 sec 102 false {'EngineDataIEEE'} {[0 128 59 68 0 0 0 0]} 8 {1x1 struct} false false
 2.3006 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1x1 struct} false false
 2.3008 sec 201 false {'ABSdata' } {[0 0 0 0 172 38]} 6 {1x1 struct} false false
 2.3009 sec 1020 false {'GearBoxInfo' } {[1]} 1 {1x1 struct} false false

14 Vehicle Network Toolbox Examples

14-180

https://www.mathworks.com/help/vnt/ug/candatabase.html
https://www.mathworks.com/help/vnt/ug/canmessagetimetable.html

 2.3201 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1x1 struct} false false
 2.3401 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1x1 struct} false false
 2.3502 sec 100 false {'EngineData' } {[4 0 25 2 119 1 238 2]} 8 {1x1 struct} false false
 2.3505 sec 102 false {'EngineDataIEEE'} {[53 127 119 64 0 128 187 67]} 8 {1x1 struct} false false
 2.3507 sec 201 false {'ABSdata' } {[0 0 0 0 35 40]} 6 {1x1 struct} false false
 2.3508 sec 1020 false {'GearBoxInfo' } {[1]} 1 {1x1 struct} false false
 2.3601 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1x1 struct} false false
 2.3801 sec 103 false {'Ignition_Info' } {[1 0]} 2 {1x1 struct} false false
 2.4002 sec 100 false {'EngineData' } {[10 0 25 3 119 1 238 2]} 8 {1x1 struct} false false
 ⋮

View the signals stored in the "EngineData" message.

msgTimetable.Signals{3}

ans = struct with fields:
 PetrolLevel: 1
 EngPower: 7.5000
 EngForce: 0
 IdleRunning: 0
 EngTemp: 0
 EngSpeed: 750

Repackage and Visualize Signal Values of Interest

Use the canSignalTimetable function to repackage signal data from each unique message on the
bus into a signal timetable. This example creates three individual signal timetables for the three
messages of interest, "ABSdata", "EngineData" and "GearBoxInfo", from the CAN message timetable.

signalTimetable1 = canSignalTimetable(msgTimetable, "ABSdata")

signalTimetable1=1147×4 timetable
 Time AccelerationForce Diagnostics GearLock CarSpeed
 __________ _________________ ___________ ________ ________

 2.3008 sec -100 0 0 0
 2.3507 sec 275 0 0 0
 2.4008 sec 275 0 0 0
 2.4507 sec 275 0 0 0
 2.5008 sec 275 0 0 0
 2.5507 sec 275 0 0 0
 2.6008 sec 275 0 0 0
 2.6507 sec 275 0 0 0
 2.7008 sec 350 0 0 0
 2.7507 sec 425 0 0 0.5
 2.8008 sec 425 0 0 0.5
 2.8507 sec 500 0 0 0.5
 2.9008 sec 575 0 0 0.5
 2.9507 sec 575 0 0 0.5
 3.0008 sec 650 0 0 0.5
 3.0507 sec 725 0 0 0.5
 ⋮

signalTimetable2 = canSignalTimetable(msgTimetable, "EngineData")

signalTimetable2=1147×6 timetable
 Time PetrolLevel EngPower EngForce IdleRunning EngTemp EngSpeed

 Decode CAN Data from MDF-Files

14-181

https://www.mathworks.com/help/vnt/ug/cansignaltimetable.html

 __________ ___________ ________ ________ ___________ _______ ________

 2.3002 sec 1 7.5 0 0 0 750
 2.3502 sec 2 7.5 375 0 0 4
 2.4002 sec 3 7.5 375 0 0 10
 2.4502 sec 4 7.5 375 0 0 17
 2.5002 sec 5 7.5 375 0 0 23
 2.5502 sec 6 7.5 375 0 0 30
 2.6002 sec 7 7.5 375 0 0 36
 2.6502 sec 8 7.5 375 0 0 43
 2.7002 sec 9 9 450 0 0 50
 2.7502 sec 10 10.5 525 0 0 59
 2.8002 sec 10 10.5 525 0 0 69
 2.8502 sec 11 12 600 0 0 80
 2.9002 sec 11 13.5 675 0 0 92
 2.9502 sec 12 13.5 675 0 0 106
 3.0002 sec 13 15 750 0 0 121
 3.0502 sec 13 16.5 825 0 0 136
 ⋮

signalTimetable3 = canSignalTimetable(msgTimetable, "GearBoxInfo")

signalTimetable3=1147×3 timetable
 Time EcoMode ShiftRequest Gear
 __________ _______ ____________ ____

 2.3009 sec 0 0 1
 2.3508 sec 0 0 1
 2.4009 sec 0 0 1
 2.4508 sec 0 0 1
 2.5009 sec 0 0 1
 2.5508 sec 0 0 1
 2.6009 sec 0 0 1
 2.6508 sec 0 0 1
 2.7009 sec 0 0 1
 2.7508 sec 0 0 1
 2.8009 sec 0 0 1
 2.8508 sec 0 0 1
 2.9009 sec 0 0 1
 2.9508 sec 0 0 1
 3.0009 sec 0 0 1
 3.0508 sec 0 0 1
 ⋮

To visualize the signals of interest, columns from the signal timetables can be plotted over time for
further analysis.

subplot(3, 1, 1)
plot(signalTimetable1.Time, signalTimetable1.CarSpeed, "r")
title("{\itCarSpeed} Signal from {\itABSdata} Message", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Car Speed")
subplot(3, 1, 2)
plot(signalTimetable2.Time, signalTimetable2.EngSpeed, "b")
title("{\itEngSpeed} Signal from {\itEngineData} Message", "FontWeight", "bold")
xlabel("Timestamp")

14 Vehicle Network Toolbox Examples

14-182

ylabel("Engine Speed")
subplot(3, 1, 3)
plot(signalTimetable3.Time, signalTimetable3.Gear, "y")
title("{\itGear} Signal from {\itGearBoxInfo} Message", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Gear")

Close the Files

Close access to the MDF-file and the DBC-file by clearing their variables from the workspace.

clear m
clear canDB

 Decode CAN Data from MDF-Files

14-183

Read Data from MDF-Files with Applied Conversion Rules
This example shows you how to read channel data applying conversion rules from an MDF-file and
configure different reading options in MATLAB.

Introduction to ASAM MDF Conversion Rules

According to the ASAM MDF standard, a data value encoded in the MDF channel is denoted as a raw
value. It can be converted to a physical, engineering unit value using a conversion rule that describes
the data. Conversion rules are the methods defined at the channel level to convert raw values to
physical values.

ASAM MDF V4.2.0 supports the following conversion rules:

No Conversion

• CC_Type 0: Identity (“1:1”) conversion

Numeric to Numeric Conversions

• CC_Type 1: Linear conversion
• CC_Type 2: Rational conversion formula
• CC_Type 3: Algebraic conversion
• CC_Type 4: Value to value tabular look-up with interpolation
• CC_Type 5: Value to value tabular look-up without interpolation
• CC_Type 6: Value range to value tabular look-up

Numeric to Text Conversions

• CC_Type 7: Value to text/scale conversion tabular look-up
• CC_Type 8: Value range to text/scale conversion tabular look-up

Text to Numeric Conversion

• CC_Type 9: Text to value tabular look-up

Text to Text Conversion

• CC_Type 10: Text to text tabular look-up

Other Conversion

• CC_Type 11: Bitfield text table

Vehicle Network Toolbox™ provides the functionality to read your desired data from the MDF-file
with different Conversion options. The allowed options are:

• Numeric — Apply only numeric to numeric conversions (CC_Type 1-6). Data with other
conversion rules are read as raw values.

• None — Do not apply any conversion. All data are read as raw values.
• All — Apply all numeric and text conversions (CC_Type 1-10). All data are read as physical

values.

14 Vehicle Network Toolbox Examples

14-184

https://www.asam.net/standards/detail/mdf/wiki/

Note that if there is an identity conversion (CC_Type 0), or a none conversion (no conversion rule) in
the channel, the data are read as raw values regardless of which Conversion option is specified.

Open the MDF-File

Open access to an MDF-file using the mdf function. The object mdfObj has the property Conversion
with the default value Numeric.

mdfObj = mdf("MDF_Conversion_Example.mf4")

mdfObj =
 MDF with properties:

 File Details
 Name: 'MDF_Conversion_Example.mf4'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex96016136\MDF_Conversion_Example.mf4'
 Author: ''
 Department: ''
 Project: ''
 Subject: ''
 Comment: ''
 Version: '4.10'
 DataSize: 185
 InitialTimestamp: 1980-01-01 05:00:00.000000000

 Creator Details
 ProgramIdentifier: 'amdf5206'
 Creator: [1x1 struct]

 File Contents
 Attachment: [0x1 struct]
 ChannelNames: {{6x1 cell}}
 ChannelGroup: [1x1 struct]

 Options
 Conversion: Numeric

Use the channelList function to view the list of channels available in mdfObj.

channelList(mdfObj)

ans=6×9 table
 ChannelName ChannelGroupNumber ChannelGroupNumSamples ChannelGroupAcquisitionName ChannelGroupComment ChannelDisplayName ChannelUnit ChannelComment ChannelDescription
 ______________________________ __________________ ______________________ ___________________________ ___________________ __________________ ___________ ______________ __________________

 "Ambient temperature" 1 5 Signal with conversions <undefined> "" °F <undefined> ""
 "Engine temperature" 1 5 Signal with conversions <undefined> "" °C <undefined> ""
 "Fault code" 1 5 Signal with conversions <undefined> "" <undefined> <undefined> ""
 "Gear position" 1 5 Signal with conversions <undefined> "" <undefined> <undefined> ""
 "time" 1 5 Signal with conversions <undefined> "" s <undefined> ""
 "Windshield wiper speed level" 1 5 Signal with conversions <undefined> "" <undefined> <undefined> ""

Conversion Property and Conversion Name-Value Pair

You can choose a Conversion option to apply when reading data from an MDF-file in MATLAB. You
specify the option in either of the following ways:

 Read Data from MDF-Files with Applied Conversion Rules

14-185

https://www.mathworks.com/help/vnt/ug/mdf.html
https://www.mathworks.com/help/vnt/ug/channellist.html

• Set the Conversion property of the MDF object and call the read function.
• Specify a Conversion name-value pair when calling the read function.

View the details about the channel Engine temperature in channel group 1. The output shows that
it has Linear conversion (CC_Type 1).

mdfObj.ChannelGroup(1).Channel(2)

ans = struct with fields:
 Name: 'Engine temperature'
 DisplayName: ''
 ExtendedNamePrefix: ''
 Description: ''
 Comment: ''
 Unit: '°C'
 Type: FixedLength
 DataType: IntegerSignedLittleEndian
 NumBits: 32
 ComponentType: None
 CompositionType: None
 ConversionType: Linear

You can set the Conversion property of the mdfObj to be Numeric and read data from channel
Engine temperature in channel group 1.

mdfObj.Conversion = "Numeric"

mdfObj =
 MDF with properties:

 File Details
 Name: 'MDF_Conversion_Example.mf4'
 Path: 'C:\TEMP\Bdoc21b_1757077_3096\ib2EDA31\23\tp1aa883b7\vnt-ex96016136\MDF_Conversion_Example.mf4'
 Author: ''
 Department: ''
 Project: ''
 Subject: ''
 Comment: ''
 Version: '4.10'
 DataSize: 185
 InitialTimestamp: 1980-01-01 05:00:00.000000000

 Creator Details
 ProgramIdentifier: 'amdf5206'
 Creator: [1x1 struct]

 File Contents
 Attachment: [0x1 struct]
 ChannelNames: {{6x1 cell}}
 ChannelGroup: [1x1 struct]

 Options
 Conversion: Numeric

dataPropNum = read(mdfObj, 1, "Engine temperature")

14 Vehicle Network Toolbox Examples

14-186

dataPropNum=5×1 timetable
 Time EngineTemperature
 ________ _________________

 0 sec 35
 0.25 sec 35.556
 0.5 sec 36.111
 0.75 sec 36.667
 1 sec 37.222

You can also read data with the name-value pair Conversion, None. Note that the Conversion
name-value pair has a higher priority than the Conversion property, which means the name-value
pair is applied when the values are different.

dataNameValueNone = read(mdfObj, 1, "Engine temperature", "Conversion", "None")

dataNameValueNone=5×1 timetable
 Time EngineTemperature
 ________ _________________

 0 sec 95
 0.25 sec 96
 0.5 sec 97
 0.75 sec 98
 1 sec 99

Using the Conversion name-value pair does not change the Conversion property of mdfObj. The
Conversion property value of mdfObj after reading data with a name-value pair is still Numeric.

mdfObj.Conversion

ans =
 Conversion enumeration

 Numeric

Read Data with Different Conversion Options on Numeric to Numeric Conversions

The following code shows how to read your desired data from a channel with a numeric to numeric
conversion. The channel Engine temperature has Linear conversion (CC_Type 1) and it is chosen
to represent the reading behavior of numeric to numeric conversions (CC_Type 1-6).

Read data with the name-value pair Conversion, Numeric. In this case, Linear conversion is
applied when reading data because the Numeric option supports numeric to numeric conversions.
The physical data are returned and the physical numeric data have data type double.

dataLinearNum = read(mdfObj, 1, "Engine temperature", "Conversion", "Numeric")

dataLinearNum=5×1 timetable
 Time EngineTemperature
 ________ _________________

 0 sec 35
 0.25 sec 35.556
 0.5 sec 36.111

 Read Data from MDF-Files with Applied Conversion Rules

14-187

 0.75 sec 36.667
 1 sec 37.222

class(dataLinearNum.EngineTemperature)

ans =
'double'

Read data with the name-value pair Conversion, None. In this case, Linear conversion is not
applied when reading data because the None option does not apply any conversion. Raw data are
returned with the original data type, which is an int32.

dataLinearNone = read(mdfObj, 1, "Engine temperature", "Conversion", "None")

dataLinearNone=5×1 timetable
 Time EngineTemperature
 ________ _________________

 0 sec 95
 0.25 sec 96
 0.5 sec 97
 0.75 sec 98
 1 sec 99

class(dataLinearNone.EngineTemperature)

ans =
'int32'

Read data with the name-value pair Conversion, All. In this case, Linear conversion is applied
when reading data because the All option supports all numeric and text conversions. The physical
data are returned and the physical numeric data have data type double.

dataLinearAll = read(mdfObj, 1, "Engine temperature", "Conversion", "All")

dataLinearAll=5×1 timetable
 Time EngineTemperature
 ________ _________________

 0 sec 35
 0.25 sec 35.556
 0.5 sec 36.111
 0.75 sec 36.667
 1 sec 37.222

class(dataLinearAll.EngineTemperature)

ans =
'double'

Read Data with Different Conversion Options on Numeric to Text Conversions

The following code shows how to read your desired data from a channel with a numeric to text
conversion. The channel Gear position has ValueToText conversion (CC_Type 7) and it is
chosen to represent the reading behavior of numeric to text conversions (CC_Type 7-8).

14 Vehicle Network Toolbox Examples

14-188

View the details about the channel Gear position in channel group 1. The output shows that it has
ValueToText conversion.

mdfObj.ChannelGroup(1).Channel(3)

ans = struct with fields:
 Name: 'Gear position'
 DisplayName: ''
 ExtendedNamePrefix: ''
 Description: ''
 Comment: ''
 Unit: ''
 Type: FixedLength
 DataType: IntegerUnsignedLittleEndian
 NumBits: 8
 ComponentType: None
 CompositionType: None
 ConversionType: ValueToText

Read data with the name-value pair Conversion, Numeric. In this case, ValueToText conversion is
not applied when reading data because the Numeric option supports only numeric to numeric
conversions. The raw data are returned with the original data type, which is an int8.

dataV2TNum = read(mdfObj, 1, "Gear position", "Conversion", "Numeric")

dataV2TNum=5×1 timetable
 Time GearPosition
 ________ ____________

 0 sec 2
 0.25 sec 3
 0.5 sec 0
 0.75 sec 2
 1 sec 1

class(dataV2TNum.GearPosition)

ans =
'uint8'

Read data with the name-value pair Conversion, None. In this case, ValueToText conversion is not
applied when reading data because the None option does not apply any conversion. Raw data are
returned with the original data type, which is an int8.

dataV2TNone = read(mdfObj, 1, "Gear position", "Conversion", "None")

dataV2TNone=5×1 timetable
 Time GearPosition
 ________ ____________

 0 sec 2
 0.25 sec 3
 0.5 sec 0
 0.75 sec 2
 1 sec 1

 Read Data from MDF-Files with Applied Conversion Rules

14-189

class(dataV2TNone.GearPosition)

ans =
'uint8'

Read data with the name-value pair Conversion, All. In this case, ValueToText conversion is
applied when reading data because the All option supports all numeric and text conversions. The
physical data are returned and the physical text data have data type char.

dataV2TAll = read(mdfObj, 1, "Gear position", "Conversion", "All")

dataV2TAll=5×1 timetable
 Time GearPosition
 ________ ___________________

 0 sec {'Gear position 2'}
 0.25 sec {'Gear position 3'}
 0.5 sec {'Invalid' }
 0.75 sec {'Gear position 2'}
 1 sec {'Gear position 1'}

class(dataV2TAll.GearPosition{1})

ans =
'char'

Other Conversion Examples

There are some other channels in the mdfObj. The channels Ambient temperature, Windshield
wiper speed level, and Fault code have conversions None, TextToValue, and TextToText,
respectively. You can try to read these channels with different Conversion options.

View the details about the channel Ambient temperature in channel group 1. The output shows
that it has None conversion.

mdfObj.ChannelGroup(1).Channel(1)

ans = struct with fields:
 Name: 'Ambient temperature'
 DisplayName: ''
 ExtendedNamePrefix: ''
 Description: ''
 Comment: ''
 Unit: '°F'
 Type: FixedLength
 DataType: RealLittleEndian
 NumBits: 64
 ComponentType: None
 CompositionType: None
 ConversionType: None

View the details about the channel Windshield wiper speed level in channel group 1. The
output shows that it has TextToValue conversion.

mdfObj.ChannelGroup(1).Channel(4)

ans = struct with fields:
 Name: 'Windshield wiper speed level'

14 Vehicle Network Toolbox Examples

14-190

 DisplayName: ''
 ExtendedNamePrefix: ''
 Description: ''
 Comment: ''
 Unit: ''
 Type: VariableLength
 DataType: StringUTF8
 NumBits: 64
 ComponentType: None
 CompositionType: None
 ConversionType: TextToValue

View the details about the channel Fault code in channel group 1. The output shows that it has
TextToText conversion.

mdfObj.ChannelGroup(1).Channel(5)

ans = struct with fields:
 Name: 'Fault code'
 DisplayName: ''
 ExtendedNamePrefix: ''
 Description: ''
 Comment: ''
 Unit: ''
 Type: VariableLength
 DataType: StringUTF8
 NumBits: 64
 ComponentType: None
 CompositionType: None
 ConversionType: TextToText

Close the File

Close access to the MDF-file by clearing the variable from the workspace.

clear mdfObj

 Read Data from MDF-Files with Applied Conversion Rules

14-191

Receive and Visualize CAN Data Using CAN Explorer
This example shows how to use the CAN Explorer app to receive and visualize CAN data. It uses
MathWorks® Virtual channels which are connected in a loopback configuration. CAN Explorer is
configured to receive data using MathWorks Virtual 1 Channel 1. Pre-recorded data is provided in a
MAT-file and replayed onto MathWorks Virtual 1 Channel 2 to emulate CAN traffic generated from
connecting to an actual vehicle system.

Open the CAN Explorer

Open the CAN Explorer app using command canExplorer. Alternatively, you can find CAN
Explorer in the MATLAB® Apps tab.

Select the Device Channel

The Device List shows all the accessible CAN channels from devices connected to the system, and
the current device channel in use is highlighted by a blue outline. Each time you start CAN Explorer,
the first device channel in the list is automatically selected by default. Select MathWorks Virtual 1
Channel 1 from the Device List if it is not selected by default.

Configure the Database Files

Add database files to CAN Explorer to decode incoming messages and signals.

1 To open the Database Configuration dialog, select Databases in the toolstrip.
2 Click Add to open the file selection dialog. Select the CANExplorerDatabase.dbc file provided

with the example.

14 Vehicle Network Toolbox Examples

14-192

3 Click OK to save the database configuration and close the dialog.

Configure the Channel Bus Speed

Configure the channel bus speed if the desired network speed differs from the default value.

1 To open the Device Channel Configuration dialog, select Device Channel in the toolstrip.
2 This example uses the default bus speed at 500000 bits per second. Confirm the current device

channel configuration and click OK.

 Receive and Visualize CAN Data Using CAN Explorer

14-193

In the same dialog, you can configure message filters respectively for standard ID and extended ID to
control which messages pass through the channel. By default, both filter options are set to allow all
messages to pass, but you can also specify certain IDs to be allowed or blocked.

Configure the Signal Table

Add signals of interest to view on the Signal Table. In this example, you view all signals defined in the
CANExplorerDatabase.dbc file.

1 To open the Signal Table Configuration dialog, select Signals > Configure Signal Table in the
toolstrip.

2 Add signals from the Available Signals pane to the Configured Signals pane using the →
button. You can add individual signals, add all signals in a message by adding the message, or
add all signals in a database by adding the database. For this example, select
CANExplorerDatabase.dbc in the Available Signals pane and click → to add all signals in the
database to view.

3 Click OK to save the signal table configuration and close the dialog.

14 Vehicle Network Toolbox Examples

14-194

If you provide a search text for signals or messages and click Find, the Available Signals pane is
updated to display search results that are case-insensitive partial matches to the search text.

Configure the Signal Scopes

Add signals of interest to view on the Signal Scopes. CAN Explorer provides 3 scopes that can each
be configured to visualize signals of selection. The number of scopes is fixed and cannot be
customized. In this example, you view all signals from Message_A in the top signal scope, all signals
from Message_B and Message_C in the middle signal scope, and all signals from Message_D in the
bottom signal scope.

 Receive and Visualize CAN Data Using CAN Explorer

14-195

1 To open the Top Signal Scope Configuration dialog, select Signals > Configure Top Signal
Scope in the toolstrip.

2 Select Message_A in the Available Signals pane and click → to add all signals in this message
to view on the top signal scope.

3 Click OK to save the top signal scope configuration and close the dialog.
4 Using a similar approach, add signals from Message_B and Message_C to view on the middle

signal scope, and add signals from Message_D to view on the bottom signal scope.

Start Monitoring

Start monitoring in CAN Explorer before starting the replay to avoid losing any data. Click Start in
the toolstrip.

Replay Pre-Recorded CAN Data

Data logged from a CAN network is provided in the file CANExplorerData.mat. The data is saved in
timetable format and the time range spans about 60 seconds.

Replay the CAN data onto MathWorks Virtual 1 Channel 2 for CAN Explorer to receive on
MathWorks Virtual 1 Channel 1 in the same MATLAB instance. To start the data replay, execute the
script replayCANData.m. You can also execute the script sequentially multiple times to generate
CAN data beyond 60 seconds for additional experiments.

Explore the Monitor and Display Options

While CAN Explorer continues to receive data, you can experiment with controls in the Monitor and
Display sections of the toolstrip.

14 Vehicle Network Toolbox Examples

14-196

1 Click Pause to temporarily suspend CAN Explorer from visually updating. While paused CAN
Explorer continues accumulating and processing data in the background.

2 Click Continue to resume the visual updates in CAN Explorer.

For further exploration:

1 If you click Clear Data, all accumulated data is completely cleared from CAN Explorer.
2 By default, the Message Table displays all CAN messages in chronological order. To view the

latest instance of each unique message, toggle Unique Messages.
3 By default, both the Message Table and the Signal Table display time since the start of

monitoring. To view the delta time since the last message or signal in each table, toggle Delta
Time.

Stop Monitoring

When you have completed your live acquisition activity, click Stop in the toolstrip to take the device
channel offline.

Clean up for the Data Replay

Clean up by executing the script replayCANDataCleanup.m, which stops the MathWorks Virtual 1
Channel 2 used for replay and clears the unneeded variables.

Export Data for Additional Use

In the toolstrip, click the top half of the Export button to export the received data into the MATLAB
workspace in a timetable format.

If you would like to retain the exported variable for future use:

• To save the variable to a MAT-file, use the save function.
• To save the variable to a BLF-file, use the blfwrite function.

The exported timetable of messages is also convertible into individual timetables of signal data. The
canSignalTimetable function returns a structure with one field for each unique message in the
timetable. Each field value is a timetable of all the signals defined in that message.

 Receive and Visualize CAN Data Using CAN Explorer

14-197

Receive and Visualize CAN FD Data Using CAN FD Explorer
This example shows how to use the CAN FD Explorer app to receive and visualize CAN FD data. It
uses MathWorks® Virtual channels which are connected in a loopback configuration. CAN FD
Explorer is configured to receive data using MathWorks Virtual 1 Channel 1. Pre-recorded data is
provided in a MAT-file and replayed onto MathWorks Virtual 1 Channel 2 to emulate CAN FD traffic
generated from connecting to an actual vehicle system.

Open the CAN FD Explorer

Open the CAN FD Explorer app using command canFDExplorer. Alternatively, you can find CAN
FD Explorer in the MATLAB® Apps tab.

Select the Device Channel

The Device List shows all the accessible CAN FD channels from devices connected to the system,
and the current device channel in use is highlighted by a blue outline. Each time you start CAN FD
Explorer, the first device channel in the list is automatically selected by default. Select MathWorks
Virtual 1 Channel 1 from the Device List if it is not selected by default.

Configure the Database Files

Add database files to CAN FD Explorer to decode incoming messages and signals.

1 To open the Database Configuration dialog, select Databases in the toolstrip.
2 Click Add to open the file selection dialog. Select the CANFDExplorerDatabase.dbc file

provided with the example.

14 Vehicle Network Toolbox Examples

14-198

3 Click OK to save the database configuration and close the dialog.

Configure the Channel Bus Speed

Configure the channel bus speed if the desired network speed differs from the default value.

1 To open the Device Channel Configuration dialog, select Device Channel in the toolstrip.
2 This example uses the default arbitration bus speed at 500000 bits per second and data bus

speed at 2000000 bits per second. Confirm the current device channel configuration and click
OK.

 Receive and Visualize CAN FD Data Using CAN FD Explorer

14-199

In the same dialog, you can configure message filters respectively for standard ID and extended ID to
control which messages pass through the channel. By default, both filter options are set to allow all
messages to pass, but you can also specify certain IDs to be allowed or blocked.

Configure the Signal Table

Add signals of interest to view on the Signal Table. In this example, you view all signals defined in the
CANFDExplorerDatabase.dbc file.

1 To open the Signal Table Configuration dialog, select Signals > Configure Signal Table in the
toolstrip.

2 Add signals from the Available Signals pane to the Configured Signals pane using the →
button. You can add individual signals, add all signals in a message by adding the message, or
add all signals in a database by adding the database. For this example, select
CANFDExplorerDatabase.dbc in the Available Signals pane and click → to add all signals in
the database to view.

3 Click OK to save the signal table configuration and close the dialog.

14 Vehicle Network Toolbox Examples

14-200

If you provide a search text for signals or messages and click Find, the Available Signals pane is
updated to display search results that are case-insensitive partial matches to the search text.

Configure the Signal Scopes

Add signals of interest to view on the Signal Scopes. CAN FD Explorer provides 3 scopes that can
each be configured to visualize signals of selection. The number of scopes is fixed and cannot be
customized. In this example, you view all signals from Message_A in the top signal scope, all signals
from Message_B and Message_C in the middle signal scope, and all signals from Message_D in the
bottom signal scope.

 Receive and Visualize CAN FD Data Using CAN FD Explorer

14-201

1 To open the Top Signal Scope Configuration dialog, select Signals > Configure Top Signal
Scope in the toolstrip.

2 Select Message_A in the Available Signals pane and click → to add all signals in this message
to view on the top signal scope.

3 Click OK to save the top signal scope configuration and close the dialog.
4 Using a similar approach, add signals from Message_B and Message_C to view on the middle

signal scope, and add signals from Message_D to view on the bottom signal scope.

Start Monitoring

Start monitoring in CAN FD Explorer before starting the replay to avoid losing any data. Click Start
in the toolstrip.

Replay Pre-Recorded CAN FD Data

Data logged from a CAN FD network is provided in the file CANFDExplorerData.mat. The data is
saved in timetable format and the time range spans about 60 seconds.

Replay the CAN FD data onto MathWorks Virtual 1 Channel 2 for CAN FD Explorer to receive on
MathWorks Virtual 1 Channel 1 in the same MATLAB instance. To start the data replay, execute the
script replayCANFDData.m. You can also execute the script sequentially multiple times to generate
CAN FD data beyond 60 seconds for additional experiments.

Explore the Monitor and Display Options

While CAN FD Explorer continues to receive data, you can experiment with controls in the Monitor
and Display sections of the toolstrip.

14 Vehicle Network Toolbox Examples

14-202

1 Click Pause to temporarily suspend CAN FD Explorer from visually updating. While paused
CAN FD Explorer continues accumulating and processing data in the background.

2 Click Continue to resume the visual updates in CAN FD Explorer.

For further exploration:

1 If you click Clear Data, all accumulated data is completely cleared from CAN FD Explorer.
2 By default, the Message Table displays all CAN FD messages in chronological order. To view the

latest instance of each unique message, toggle Unique Messages.
3 By default, both the Message Table and the Signal Table display time since the start of

monitoring. To view the delta time since the last message or signal in each table, toggle Delta
Time.

Stop Monitoring

When you have completed your live acquisition activity, click Stop in the toolstrip to take the device
channel offline.

Clean up for the Data Replay

Clean up by executing the script replayCANFDDataCleanup.m, which stops the MathWorks Virtual
1 Channel 2 used for replay and clears the unneeded variables.

Export Data for Additional Use

In the toolstrip, click the top half of the Export button to export the received data into the MATLAB
workspace in a timetable format.

If you would like to retain the exported variable for future use:

• To save the variable to a MAT-file, use the save function.
• To save the variable to a BLF-file, use the blfwrite function.

The exported timetable of messages is also convertible into individual timetables of signal data. The
canSignalTimetable function returns a structure with one field for each unique message in the
timetable. Each field value is a timetable of all the signals defined in that message.

 Receive and Visualize CAN FD Data Using CAN FD Explorer

14-203

Decode J1939 Data from BLF-Files
This example shows you how to import and decode J1939 data from BLF-files in MATLAB for analysis.
The BLF-file used in this example was generated from Vector CANoe using the "System Configuration
(J1939)" sample. This example also uses the CAN database file, Powertrain_J1939_BLF.dbc,
provided with the Vector sample configuration.

Investigate the BLF-File

Retrieve and view information about the BLF-file. The blfinfo function parses general information
about the format and contents of the Vector Binary Logging Format BLF-file and returns the
information as a structure.

binf = blfinfo("LoggingBLF_J1939.blf")

binf = struct with fields:
 Name: "LoggingBLF_J1939.blf"
 Path: "C:\Users\michellw\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex52809946\LoggingBLF_J1939.blf"
 Application: "CANoe"
 ApplicationVersion: "12.0.167"
 Objects: 131119
 StartTime: 21-Apr-2021 10:05:13.232
 EndTime: 21-Apr-2021 10:09:14.344
 ChannelList: [2×3 table]

Notice the ChannelList property indicates there are 2 channels referenced in the BLF-file with
ChannelID values of 1 and 2. The J1939 powertrain data of interest was logged from the CAN2
network, so this example focuses on ChannelID 2.

binf.ChannelList

ans=2×3 table
 ChannelID Protocol Objects
 _________ ________ _______

 1 "CAN" 92720
 2 "CAN" 26054

J1939 is a protocol built on top of the CAN protocol. A parameter group (PG) is a set of parameters
belonging to the same topic and sharing the same transmission rate e.g. EngCoolantTemp,
EngFuelTemp, EngTurboOilTemp, etc. of the ET1_EMS PG (see the ET1_EMS PG in signalTimetables
below). Each parameter group is addressed via a unique number called the parameter group number
(PGN). J1939 PGs are transmitted as CAN frames.

Read J1939 CAN Data Frames From the BLF-File

Read all data from channel 2 into a timetable using the blfread function. Each row of the timetable
represents one raw CAN frame from the bus.

canData = blfread("LoggingBLF_J1939.blf", 2)

canData=26054×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ _________ ________ __________ ___________________________________ ______ ____________ _____ ______

14 Vehicle Network Toolbox Examples

14-204

 0.000568 sec 418316262 true {0×0 char} {[105 52 169 232 0 131 0 16]} 8 {0×0 struct} false false
 0.27057 sec 418383078 true {0×0 char} {[255 255 255 208 7 255 255 255]} 8 {0×0 struct} false false
 0.29057 sec 418383078 true {0×0 char} {[255 255 255 208 7 255 255 255]} 8 {0×0 struct} false false
 0.30058 sec 418382822 true {0×0 char} {[255 0 255 255 255 255 255 255]} 8 {0×0 struct} false false
 0.30116 sec 419327206 true {0×0 char} {[255 255 255 255 255 255 255 255]} 8 {0×0 struct} false false
 0.31057 sec 418383078 true {0×0 char} {[255 255 255 208 7 255 255 255]} 8 {0×0 struct} false false
 0.33057 sec 418383078 true {0×0 char} {[255 255 255 208 7 255 255 255]} 8 {0×0 struct} false false
 0.35058 sec 418382822 true {0×0 char} {[255 0 255 255 255 255 255 255]} 8 {0×0 struct} false false
 0.35115 sec 418383078 true {0×0 char} {[255 255 255 208 7 255 255 255]} 8 {0×0 struct} false false
 0.35173 sec 419327206 true {0×0 char} {[255 255 255 255 255 255 255 255]} 8 {0×0 struct} false false
 0.3523 sec 419361254 true {0×0 char} {[255 0 0 12 255 255 224 255]} 8 {0×0 struct} false false
 0.37057 sec 418383078 true {0×0 char} {[255 255 255 208 7 255 255 255]} 8 {0×0 struct} false false
 0.39057 sec 418383078 true {0×0 char} {[255 255 255 208 7 255 255 255]} 8 {0×0 struct} false false
 0.40058 sec 418382822 true {0×0 char} {[255 0 255 255 255 255 255 255]} 8 {0×0 struct} false false
 0.40116 sec 419327206 true {0×0 char} {[255 255 255 255 255 255 255 255]} 8 {0×0 struct} false false
 0.41057 sec 418383078 true {0×0 char} {[255 255 255 208 7 255 255 255]} 8 {0×0 struct} false false
 ⋮

Decode J1939 Parameter Groups Using the DBC-File

Open the database file using the canDatabase function.

canDB = canDatabase("Powertrain_J1939_BLF.dbc")

canDB =
 Database with properties:

 Name: 'Powertrain_J1939_BLF'
 Path: 'C:\Users\michellw\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex52809946\Powertrain_J1939_BLF.dbc'
 Nodes: {12×1 cell}
 NodeInfo: [12×1 struct]
 Messages: {93×1 cell}
 MessageInfo: [93×1 struct]
 Attributes: {3×1 cell}
 AttributeInfo: [3×1 struct]
 UserData: []

The j1939ParameterGroupTimetable function uses the database to decode the raw CAN Data
into PGs, PGNs and signals. The timetable of binary logging format data is converted into a Vehicle
Network Toolbox™ J1939 parameter group timetable.

j1939PGTimetable = j1939ParameterGroupTimetable(canData, canDB)

j1939PGTimetable=26030×8 timetable
 Time Name PGN Priority PDUFormatType SourceAddress DestinationAddress Data Signals
 ____________ ________ _____ ________ _____________________ _____________ __________________ ___________________________________ ____________

 0.000568 sec ACL 60928 6 Peer-to-Peer (Type 1) 230 255 {[105 52 169 232 0 131 0 16]} {1×1 struct}
 0.27057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.29057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.30058 sec EEC2_EMS 61443 6 Broadcast (Type 2) 230 255 {[255 0 255 255 255 255 255 255]} {1×1 struct}
 0.30116 sec TCO1_TCO 65132 6 Broadcast (Type 2) 230 255 {[255 255 255 255 255 255 255 255]} {1×1 struct}
 0.31057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.33057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.35058 sec EEC2_EMS 61443 6 Broadcast (Type 2) 230 255 {[255 0 255 255 255 255 255 255]} {1×1 struct}
 0.35115 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}

 Decode J1939 Data from BLF-Files

14-205

 0.35173 sec TCO1_TCO 65132 6 Broadcast (Type 2) 230 255 {[255 255 255 255 255 255 255 255]} {1×1 struct}
 0.3523 sec CCVS_EMS 65265 6 Broadcast (Type 2) 230 255 {[255 0 0 12 255 255 224 255]} {1×1 struct}
 0.37057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.39057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.40058 sec EEC2_EMS 61443 6 Broadcast (Type 2) 230 255 {[255 0 255 255 255 255 255 255]} {1×1 struct}
 0.40116 sec TCO1_TCO 65132 6 Broadcast (Type 2) 230 255 {[255 255 255 255 255 255 255 255]} {1×1 struct}
 0.41057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 ⋮

View the signal data stored in the third PG of the timetable, which is one instance of the "EEC1_EMS"
PG.

signalData = j1939PGTimetable.Signals{3}

signalData = struct with fields:
 EngDemandPercentTorque: 130
 EngStarterMode: 15
 SrcAddrssOfCtrllngDvcForEngCtrl: 255
 EngSpeed: 250
 ActualEngPercentTorque: 130
 DriversDemandEngPercentTorque: 130
 EngTorqueMode: 15

Repackage and Visualize Signal Values of Interest

Use the j1939SignalTimetable function to repackage signal data from each unique PGN on the
bus into a signal timetable. This example creates two individual signal timetables for the two PGs of
interest, "EEC1_EMS" and "TCO1_TCO", from the J1939 PG timetable.

signalTimetable1 = j1939SignalTimetable(j1939PGTimetable, "ParameterGroups", "EEC1_EMS")

signalTimetable1=12043×7 timetable
 Time EngDemandPercentTorque EngStarterMode SrcAddrssOfCtrllngDvcForEngCtrl EngSpeed ActualEngPercentTorque DriversDemandEngPercentTorque EngTorqueMode
 ___________ ______________________ ______________ _______________________________ ________ ______________________ _____________________________ _____________

 0.27057 sec 130 15 255 250 130 130 15
 0.29057 sec 130 15 255 250 130 130 15
 0.31057 sec 130 15 255 250 130 130 15
 0.33057 sec 130 15 255 250 130 130 15
 0.35115 sec 130 15 255 250 130 130 15
 0.37057 sec 130 15 255 250 130 130 15
 0.39057 sec 130 15 255 250 130 130 15
 0.41057 sec 130 15 255 250 130 130 15
 0.43057 sec 130 15 255 250 130 130 15
 0.45115 sec 130 15 255 250 130 130 15
 0.47057 sec 130 15 255 250 130 130 15
 0.49057 sec 130 15 255 250 130 130 15
 0.51057 sec 130 15 255 250 130 130 15
 0.53057 sec 130 15 255 250 130 130 15
 0.55115 sec 130 15 255 250 130 130 15
 0.57057 sec 130 15 255 250 130 130 15
 ⋮

signalTimetable2 = j1939SignalTimetable(j1939PGTimetable, "ParameterGroups", "TCO1_TCO")

signalTimetable2=4817×14 timetable
 Time TachographVehicleSpeed TachographOutputShaftSpeed DirectionIndicator TachographPerformance HandlingInformation SystemEvent DriverCardDriver2 Driver2TimeRelatedStates Overspeed DriverCardDriver1 Driver1TimeRelatedStates DriveRecognize Driver2WorkingState Driver1WorkingState

14 Vehicle Network Toolbox Examples

14-206

 ___________ ______________________ __________________________ __________________ _____________________ ___________________ ___________ _________________ ________________________ _________ _________________ ________________________ ______________ ___________________ ___________________

 0.30116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.35173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.40116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.45173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.50116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.55173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.60116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.65173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.70116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.75173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.80116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.85173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.90116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.95173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 1.0012 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 1.0517 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 ⋮

You can alternatively choose to convert the whole J1939 PG timetable into a struct containing
multiple J1939 signal timetables for each individual PG, and index into it to get data for a particular
PG.

signalTimetables = j1939SignalTimetable(j1939PGTimetable)

signalTimetables = struct with fields:
 ACL: [1×14 timetable]
 CCVS_EMS: [2408×19 timetable]
 DD: [240×5 timetable]
 EEC1_EMS: [12043×7 timetable]
 EEC2_EMS: [4817×10 timetable]
 ET1_EMS: [240×6 timetable]
 HOURS_EMS: [240×2 timetable]
 LFC_EMS: [480×2 timetable]
 SERV: [240×6 timetable]
 TCO1_TCO: [4817×14 timetable]
 VDHR_EMS: [240×2 timetable]
 VI_EMS: [24×1 timetable]
 VW_SSC: [240×4 timetable]

signalTimetables.EEC1_EMS

ans=12043×7 timetable
 Time EngDemandPercentTorque EngStarterMode SrcAddrssOfCtrllngDvcForEngCtrl EngSpeed ActualEngPercentTorque DriversDemandEngPercentTorque EngTorqueMode
 ___________ ______________________ ______________ _______________________________ ________ ______________________ _____________________________ _____________

 0.27057 sec 130 15 255 250 130 130 15
 0.29057 sec 130 15 255 250 130 130 15
 0.31057 sec 130 15 255 250 130 130 15
 0.33057 sec 130 15 255 250 130 130 15
 0.35115 sec 130 15 255 250 130 130 15
 0.37057 sec 130 15 255 250 130 130 15
 0.39057 sec 130 15 255 250 130 130 15
 0.41057 sec 130 15 255 250 130 130 15
 0.43057 sec 130 15 255 250 130 130 15

 Decode J1939 Data from BLF-Files

14-207

 0.45115 sec 130 15 255 250 130 130 15
 0.47057 sec 130 15 255 250 130 130 15
 0.49057 sec 130 15 255 250 130 130 15
 0.51057 sec 130 15 255 250 130 130 15
 0.53057 sec 130 15 255 250 130 130 15
 0.55115 sec 130 15 255 250 130 130 15
 0.57057 sec 130 15 255 250 130 130 15
 ⋮

To visualize a signal of interest, variables from the signal timetables can be plotted over time for
further analysis. For this example, look at the "EngineSpeed" signal from the "EEC1_EMS" PG.

plot(signalTimetable1.Time, signalTimetable1.EngSpeed, "r")
title("{\itEngineSpeed} signal from {\itEEC1_EMS} PG", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Engine Speed")

Close the File

Close access to the DBC-file by clearing its variable from the workspace.

clear canDB

14 Vehicle Network Toolbox Examples

14-208

Decode J1939 Data from MDF-Files
This example shows you how to import and decode J1939 data from MDF-files in MATLAB for
analysis. The MDF-file used in this example was generated from Vector CANoe using the "System
Configuration (J1939)" sample. This example also uses the CAN database file,
Powertrain_J1939_MDF.dbc, provided with the Vector sample configuration.

Open the MDF-File

Open access to the MDF-file using the mdf function.

m = mdf("LoggingMDF_J1939.mf4")

m =
 MDF with properties:

 File Details
 Name: 'LoggingMDF_J1939.mf4'
 Path: 'C:\Users\michellw\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex76385747\LoggingMDF_J1939.mf4'
 Author: ''
 Department: ''
 Project: ''
 Subject: ''
 Comment: ''
 Version: '4.10'
 DataSize: 3743994
 InitialTimestamp: 2021-04-21 14:05:13.232000000

 Creator Details
 ProgramIdentifier: 'MDF4Lib'
 Creator: [1×1 struct]

 File Contents
 Attachment: [5×1 struct]
 ChannelNames: {43×1 cell}
 ChannelGroup: [1×43 struct]

 Options
 Conversion: Numeric

Identify J1939 CAN Data Frames

According to the ASAM MDF associated standard for bus logging, the event types defined for a CAN
bus system can be "CAN_DataFrame", "CAN_RemoteFrame", "CAN_ErrorFrame", or
"CAN_OverloadFrame". J1939 is a protocol built on top of the CAN protocol. A J1939 parameter
group (PG) is a set of parameters belonging to the same topic and sharing the same transmission
rate. For example, the Electronic Engine Controller 1 (EEC1) PG contains engine speed, engine
torque demand percent, actual engine torque percent, etc. Each parameter group is addressed via a
unique number called the parameter group number (PGN). J1939 PGs are transmitted as CAN
frames, and the MDF-file reflects that a J1939 PG is logged as a "CAN_DataFrame".

The standard specifies that the channel names of the event structure should be prefixed by the event
type name, for instance, "CAN_DataFrame". Typically a dot is used as a separator character to specify
the member channels, for instance, "CAN_DataFrame.ID" or "CAN_DataFrame.DataLength".

 Decode J1939 Data from MDF-Files

14-209

https://www.asam.net/standards/detail/mdf/

Use the channelList function to filter on channel names exactly matching "CAN_DataFrame". A
table with information on matched channels is returned.

channelList(m, "CAN_DataFrame", "ExactMatch", true)

ans=2×9 table
 ChannelName ChannelGroupNumber ChannelGroupNumSamples ChannelGroupAcquisitionName ChannelGroupComment ChannelDisplayName ChannelUnit ChannelComment ChannelDescription
 _______________ __________________ ______________________ ___________________________ ___________________ __________________ ___________ ______________ __________________

 "CAN_DataFrame" 13 26054 CAN2 <undefined> "" <undefined> bus event data "bus event data"
 "CAN_DataFrame" 14 92720 CAN1 <undefined> "" <undefined> bus event data "bus event data"

The J1939 powertrain data of interest was logged from the CAN 2 network. The channelList output
above shows that the data from CAN 2 network has been stored in channel group 13 of the MDF-file.
View the channel group details using the ChannelGroup property.

m.ChannelGroup(13)

ans = struct with fields:
 AcquisitionName: 'CAN2'
 Comment: ''
 NumSamples: 26054
 DataSize: 703458
 Sorted: 1
 Channel: [14×1 struct]

Read J1939 CAN Data Frames From the MDF-File

Read all data from all channels in channel group 13 into a timetable using the read function. The
timetable is structured to follow the ASAM MDF standard logging format. Each row represents one
raw CAN frame from the bus, while each column represents a channel within the specified channel
group. The channels, such as "CAN_DataFrame.Dir", are named to follow the bus logging standard.
However, because timetable column names must be valid MATLAB variable names, they might not be
identical to the channel names. Most unsupported characters are converted to underscores. Because
"." is not supported in a MATLAB variable name, "CAN_DataFrame.Dir" is altered to
"CAN_DataFrame_Dir" in the table.

canData = read(m, 13, m.ChannelNames{13})

canData=26054×14 timetable
 Time CAN_DataFrame_BusChannel CAN_DataFrame_Flags CAN_DataFrame_Dir CAN_DataFrame_SingleWire CAN_DataFrame_WakeUp CAN_DataFrame_ID CAN_DataFrame_IDE CAN_DataFrame_FrameDuration CAN_DataFrame_BitCount CAN_DataFrame_DLC CAN_DataFrame_DataLength CAN_DataFrame_DataBytes CAN_DataFrame t
 ____________ ________________________ ___________________ _________________ ________________________ ____________________ ________________ _________________ ___________________________ ______________________ _________________ ________________________ ___________________________________ ___ ________

 0.000568 sec 2 1 1 0 0 2565799910 1 0 0 8 8 {[105 52 169 232 0 131 0 16]} {[1 8 230 255 238 152 105 52 169 232 0 131 0 16 0 0 0 0 0]} 0.000568
 0.27057 sec 2 1 1 0 0 2565866726 1 0 0 8 8 {[255 255 255 208 7 255 255 255]} {[1 8 230 4 240 152 255 255 255 208 7 255 255 255 0 0 0 0 0]} 0.27057
 0.29057 sec 2 1 1 0 0 2565866726 1 0 0 8 8 {[255 255 255 208 7 255 255 255]} {[1 8 230 4 240 152 255 255 255 208 7 255 255 255 0 0 0 0 0]} 0.29057
 0.30058 sec 2 1 1 0 0 2565866470 1 0 0 8 8 {[255 0 255 255 255 255 255 255]} {[1 8 230 3 240 152 255 0 255 255 255 255 255 255 0 0 0 0 0]} 0.30058
 0.30116 sec 2 1 1 0 0 2566810854 1 0 0 8 8 {[255 255 255 255 255 255 255 255]} {[1 8 230 108 254 152 255 255 255 255 255 255 255 255 0 0 0 0 0]} 0.30116
 0.31057 sec 2 1 1 0 0 2565866726 1 0 0 8 8 {[255 255 255 208 7 255 255 255]} {[1 8 230 4 240 152 255 255 255 208 7 255 255 255 0 0 0 0 0]} 0.31057
 0.33057 sec 2 1 1 0 0 2565866726 1 0 0 8 8 {[255 255 255 208 7 255 255 255]} {[1 8 230 4 240 152 255 255 255 208 7 255 255 255 0 0 0 0 0]} 0.33057
 0.35058 sec 2 1 1 0 0 2565866470 1 0 0 8 8 {[255 0 255 255 255 255 255 255]} {[1 8 230 3 240 152 255 0 255 255 255 255 255 255 0 0 0 0 0]} 0.35058
 0.35115 sec 2 1 1 0 0 2565866726 1 0 0 8 8 {[255 255 255 208 7 255 255 255]} {[1 8 230 4 240 152 255 255 255 208 7 255 255 255 0 0 0 0 0]} 0.35115
 0.35173 sec 2 1 1 0 0 2566810854 1 0 0 8 8 {[255 255 255 255 255 255 255 255]} {[1 8 230 108 254 152 255 255 255 255 255 255 255 255 0 0 0 0 0]} 0.35173
 0.3523 sec 2 1 1 0 0 2566844902 1 0 0 8 8 {[255 0 0 12 255 255 224 255]} {[1 8 230 241 254 152 255 0 0 12 255 255 224 255 0 0 0 0 0]} 0.3523
 0.37057 sec 2 1 1 0 0 2565866726 1 0 0 8 8 {[255 255 255 208 7 255 255 255]} {[1 8 230 4 240 152 255 255 255 208 7 255 255 255 0 0 0 0 0]} 0.37057
 0.39057 sec 2 1 1 0 0 2565866726 1 0 0 8 8 {[255 255 255 208 7 255 255 255]} {[1 8 230 4 240 152 255 255 255 208 7 255 255 255 0 0 0 0 0]} 0.39057

14 Vehicle Network Toolbox Examples

14-210

 0.40058 sec 2 1 1 0 0 2565866470 1 0 0 8 8 {[255 0 255 255 255 255 255 255]} {[1 8 230 3 240 152 255 0 255 255 255 255 255 255 0 0 0 0 0]} 0.40058
 0.40116 sec 2 1 1 0 0 2566810854 1 0 0 8 8 {[255 255 255 255 255 255 255 255]} {[1 8 230 108 254 152 255 255 255 255 255 255 255 255 0 0 0 0 0]} 0.40116
 0.41057 sec 2 1 1 0 0 2565866726 1 0 0 8 8 {[255 255 255 208 7 255 255 255]} {[1 8 230 4 240 152 255 255 255 208 7 255 255 255 0 0 0 0 0]} 0.41057
 ⋮

Decode J1939 Parameter Groups Using the DBC-File

Open the database file using the canDatabase function.

canDB = canDatabase("Powertrain_J1939_MDF.dbc")

canDB =
 Database with properties:

 Name: 'Powertrain_J1939_MDF'
 Path: 'C:\Users\michellw\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex76385747\Powertrain_J1939_MDF.dbc'
 Nodes: {12×1 cell}
 NodeInfo: [12×1 struct]
 Messages: {93×1 cell}
 MessageInfo: [93×1 struct]
 Attributes: {3×1 cell}
 AttributeInfo: [3×1 struct]
 UserData: []

The j1939ParameterGroupTimetable function uses the database to decode the raw CAN Data
into PGs, PGNs and signals. The timetable of ASAM standard logging format data is converted into a
Vehicle Network Toolbox J1939 parameter group timetable.

j1939PGTimetable = j1939ParameterGroupTimetable(canData, canDB)

j1939PGTimetable=26030×8 timetable
 Time Name PGN Priority PDUFormatType SourceAddress DestinationAddress Data Signals
 ____________ ________ _____ ________ _____________________ _____________ __________________ ___________________________________ ____________

 0.000568 sec ACL 60928 6 Peer-to-Peer (Type 1) 230 255 {[105 52 169 232 0 131 0 16]} {1×1 struct}
 0.27057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.29057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.30058 sec EEC2_EMS 61443 6 Broadcast (Type 2) 230 255 {[255 0 255 255 255 255 255 255]} {1×1 struct}
 0.30116 sec TCO1_TCO 65132 6 Broadcast (Type 2) 230 255 {[255 255 255 255 255 255 255 255]} {1×1 struct}
 0.31057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.33057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.35058 sec EEC2_EMS 61443 6 Broadcast (Type 2) 230 255 {[255 0 255 255 255 255 255 255]} {1×1 struct}
 0.35115 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.35173 sec TCO1_TCO 65132 6 Broadcast (Type 2) 230 255 {[255 255 255 255 255 255 255 255]} {1×1 struct}
 0.3523 sec CCVS_EMS 65265 6 Broadcast (Type 2) 230 255 {[255 0 0 12 255 255 224 255]} {1×1 struct}
 0.37057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.39057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 0.40058 sec EEC2_EMS 61443 6 Broadcast (Type 2) 230 255 {[255 0 255 255 255 255 255 255]} {1×1 struct}
 0.40116 sec TCO1_TCO 65132 6 Broadcast (Type 2) 230 255 {[255 255 255 255 255 255 255 255]} {1×1 struct}
 0.41057 sec EEC1_EMS 61444 6 Broadcast (Type 2) 230 255 {[255 255 255 208 7 255 255 255]} {1×1 struct}
 ⋮

View the signal data stored in the third PG of the timetable, which is one instance of the "EEC1_EMS"
PG.

signalData = j1939PGTimetable.Signals{3}

 Decode J1939 Data from MDF-Files

14-211

signalData = struct with fields:
 EngDemandPercentTorque: 130
 EngStarterMode: 15
 SrcAddrssOfCtrllngDvcForEngCtrl: 255
 EngSpeed: 250
 ActualEngPercentTorque: 130
 DriversDemandEngPercentTorque: 130
 EngTorqueMode: 15

Repackage and Visualize Signal Values of Interest

Use the j1939SignalTimetable function to repackage signal data from each unique PGN on the
bus into a signal timetable. This example creates two individual signal timetables for the two PGs of
interest, "EEC1_EMS" and "TCO1_TCO", from the J1939 PG timetable.

signalTimetable1 = j1939SignalTimetable(j1939PGTimetable, "ParameterGroups", "EEC1_EMS")

signalTimetable1=12043×7 timetable
 Time EngDemandPercentTorque EngStarterMode SrcAddrssOfCtrllngDvcForEngCtrl EngSpeed ActualEngPercentTorque DriversDemandEngPercentTorque EngTorqueMode
 ___________ ______________________ ______________ _______________________________ ________ ______________________ _____________________________ _____________

 0.27057 sec 130 15 255 250 130 130 15
 0.29057 sec 130 15 255 250 130 130 15
 0.31057 sec 130 15 255 250 130 130 15
 0.33057 sec 130 15 255 250 130 130 15
 0.35115 sec 130 15 255 250 130 130 15
 0.37057 sec 130 15 255 250 130 130 15
 0.39057 sec 130 15 255 250 130 130 15
 0.41057 sec 130 15 255 250 130 130 15
 0.43057 sec 130 15 255 250 130 130 15
 0.45115 sec 130 15 255 250 130 130 15
 0.47057 sec 130 15 255 250 130 130 15
 0.49057 sec 130 15 255 250 130 130 15
 0.51057 sec 130 15 255 250 130 130 15
 0.53057 sec 130 15 255 250 130 130 15
 0.55115 sec 130 15 255 250 130 130 15
 0.57057 sec 130 15 255 250 130 130 15
 ⋮

signalTimetable2 = j1939SignalTimetable(j1939PGTimetable, "ParameterGroups", "TCO1_TCO")

signalTimetable2=4817×14 timetable
 Time TachographVehicleSpeed TachographOutputShaftSpeed DirectionIndicator TachographPerformance HandlingInformation SystemEvent DriverCardDriver2 Driver2TimeRelatedStates Overspeed DriverCardDriver1 Driver1TimeRelatedStates DriveRecognize Driver2WorkingState Driver1WorkingState
 ___________ ______________________ __________________________ __________________ _____________________ ___________________ ___________ _________________ ________________________ _________ _________________ ________________________ ______________ ___________________ ___________________

 0.30116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.35173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.40116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.45173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.50116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.55173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.60116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.65173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.70116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.75173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.80116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7

14 Vehicle Network Toolbox Examples

14-212

 0.85173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.90116 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 0.95173 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 1.0012 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 1.0517 sec 256 8191.9 3 3 3 3 3 15 3 3 15 3 7 7
 ⋮

You can alternatively choose to convert the whole J1939 PG timetable into a struct containing
multiple J1939 signal timetables for each individual PG, and index into it to get data for a particular
PG.

signalTimetables = j1939SignalTimetable(j1939PGTimetable)

signalTimetables = struct with fields:
 ACL: [1×14 timetable]
 CCVS_EMS: [2408×19 timetable]
 DD: [240×5 timetable]
 EEC1_EMS: [12043×7 timetable]
 EEC2_EMS: [4817×10 timetable]
 ET1_EMS: [240×6 timetable]
 HOURS_EMS: [240×2 timetable]
 LFC_EMS: [480×2 timetable]
 SERV: [240×6 timetable]
 TCO1_TCO: [4817×14 timetable]
 VDHR_EMS: [240×2 timetable]
 VI_EMS: [24×1 timetable]
 VW_SSC: [240×4 timetable]

signalTimetables.EEC1_EMS

ans=12043×7 timetable
 Time EngDemandPercentTorque EngStarterMode SrcAddrssOfCtrllngDvcForEngCtrl EngSpeed ActualEngPercentTorque DriversDemandEngPercentTorque EngTorqueMode
 ___________ ______________________ ______________ _______________________________ ________ ______________________ _____________________________ _____________

 0.27057 sec 130 15 255 250 130 130 15
 0.29057 sec 130 15 255 250 130 130 15
 0.31057 sec 130 15 255 250 130 130 15
 0.33057 sec 130 15 255 250 130 130 15
 0.35115 sec 130 15 255 250 130 130 15
 0.37057 sec 130 15 255 250 130 130 15
 0.39057 sec 130 15 255 250 130 130 15
 0.41057 sec 130 15 255 250 130 130 15
 0.43057 sec 130 15 255 250 130 130 15
 0.45115 sec 130 15 255 250 130 130 15
 0.47057 sec 130 15 255 250 130 130 15
 0.49057 sec 130 15 255 250 130 130 15
 0.51057 sec 130 15 255 250 130 130 15
 0.53057 sec 130 15 255 250 130 130 15
 0.55115 sec 130 15 255 250 130 130 15
 0.57057 sec 130 15 255 250 130 130 15
 ⋮

To visualize a signal of interest, variables from the signal timetables can be plotted over time for
further analysis. For this example, look at the "EngineSpeed" signal from the "EEC1_EMS" PG.

 Decode J1939 Data from MDF-Files

14-213

plot(signalTimetable1.Time, signalTimetable1.EngSpeed, "r")
title("{\itEngineSpeed} signal from {\itEEC1_EMS} PG", "FontWeight", "bold")
xlabel("Timestamp")
ylabel("Engine Speed")

Close the Files

Close access to the MDF-file and the DBC-file by clearing their variables from the workspace.

clear m
clear canDB

14 Vehicle Network Toolbox Examples

14-214

Replay J1939 Logged Field Data to a Simulation
This example shows how to replay J1939 data from a BLF-file acquired from a J1939 system in a real-
world application, such as a vehicle running in the field. The Simulink model runs a simple
horsepower estimator algorithm to trigger a fault that might have occurred in the field. The example
takes you through a part of the model-based workflow using field data to recreate a fault that was
present in the Simulink algorithm before it was deployed onto an ECU, and can be extended to test
any algorithm model to debug faults.

J1939 is a higher-layer protocol that uses the Controller Area Network (CAN) bus technology as a
physical layer. Since CAN is the basis of data transfer in a J1939 system, the tool used in the field by
default logs J1939 data as CAN frames. This example performs data replay of the originally logged
CAN frames over a CAN bus from MATLAB and receives in a Simulink model using the J1939
Network Configuration, J1939 Node Configuration, J1939 CAN Transport Layer, and J1939 Receive
blocks.

The BLF-file used in this example was generated from Vector CANoe using the "System Configuration
(J1939)" sample configuration, and modified using MATLAB and Vehicle Network Toolbox. This
example also uses the J1939 DBC-file PowerTrain_J1939.dbc, provided with the Vector sample
configuration. Vehicle Network Toolbox provides J1939 Simulink blocks for receiving and transmitting
parameter groups (PG) via Simulink models over CAN. The example uses MathWorks virtual CAN
channels connected in a loopback configuration.

Read the BLF-File Data

Using the blfread function, read the data from channel 1 of the BLF-file that was acquired in the
field.

canData = blfread("LoggingBLF_J1939Replay.blf",1)

canData=15000×8 timetable
 Time ID Extended Name Data Length Signals Error Remote
 ____________ _________ ________ __________ ___________________________________ ______ ____________ _____ ______

 0.000568 sec 418316032 true {0×0 char} {[76 52 169 232 0 0 0 0]} 8 {0×0 struct} false false
 0.001128 sec 418316035 true {0×0 char} {[78 52 169 232 0 3 0 0]} 8 {0×0 struct} false false
 0.001688 sec 418316043 true {0×0 char} {[75 52 169 232 0 9 0 0]} 8 {0×0 struct} false false
 0.002244 sec 418316055 true {0×0 char} {[77 52 169 232 0 19 0 0]} 8 {0×0 struct} false false
 0.002796 sec 418316083 true {0×0 char} {[79 52 169 232 0 38 0 0]} 8 {0×0 struct} false false
 0.003364 sec 418316262 true {0×0 char} {[105 52 169 232 0 131 0 16]} 8 {0×0 struct} false false
 0.003932 sec 418316262 true {0×0 char} {[105 52 169 232 0 131 0 16]} 8 {0×0 struct} false false
 0.25158 sec 201326595 true {0×0 char} {[252 255 255 255 248 255 255 255]} 8 {0×0 struct} false false
 0.25216 sec 201326603 true {0×0 char} {[252 255 255 255 248 255 255 255]} 8 {0×0 struct} false false
 0.25272 sec 217055747 true {0×0 char} {[192 0 0 250 240 240 7 3]} 8 {0×0 struct} false false
 0.2533 sec 217056000 true {0×0 char} {[1 0 0 0 0 252 0 255]} 8 {0×0 struct} false false
 0.25386 sec 217056256 true {0×0 char} {[240 0 125 208 7 0 241 0]} 8 {0×0 struct} false false
 0.25444 sec 418382091 true {0×0 char} {[0 0 0 0 0 1 11 3]} 8 {0×0 struct} false false
 0.25501 sec 418383107 true {0×0 char} {[125 0 0 125 0 0 0 0]} 8 {0×0 struct} false false
 0.2556 sec 418384139 true {0×0 char} {[0 0 0 0 0 0 0 0]} 8 {0×0 struct} false false
 0.25618 sec 419283979 true {0×0 char} {[3 0 0 255 255 255 255 255]} 8 {0×0 struct} false false
 ⋮

This data contains one PG of interest for this example called EEC1_EMS. The PG contains data coming
from the Engine Electronic Controller module. This example manipulates the dataset from the BLF-

 Replay J1939 Logged Field Data to a Simulation

14-215

file to deliberately trigger a failure mode for demonstration purposes. The Simulink model recreates
this failure using the modified dataset.

Open the Simulink Model

Open the Simulink model that contains your algorithm. The model contained in this example uses a
basic J1939 network setup. For more details on this setup and the J1939 blocks, see the example “Get
Started with J1939 Communication in Simulink” on page 14-77.

open demoVNTSL_J1939ReplayExample

Model Overview

The example model is configured to perform a receive operation for the EEC1_EMS PG over the
MathWorks virtual device 1 channel 1.

• The J1939 Network Configuration block is configured with the database
Powertrain_J1939.dbc.

• The J1939 CAN Transport Layer block sets the Device to MathWorks virtual channel 1. The
transport layer is configured to transfer J1939 messages over CAN via the specified virtual
channel.

• The J1939 Receive block receives the messages transmitted over the network. The J1939 Receive
is configured to receive the EEC1_EMS PG and pass on the required inputs (Actual Engine
Percentage Torque (%) and Engine Speed (RPM)) to the Horsepower Estimator Algorithm. It is
also configured to pass the Engine Demanded Percent Torque (%) to a relational operator block.
The rest of the outputs have been terminated for simplicity.

14 Vehicle Network Toolbox Examples

14-216

Horsepower Estimator Algorithm

The Horsepower Estimator Algorithm is a simple calculation which takes the actual engine torque
percentage and speed values and computes engine horsepower from them.

Relational Operators

There are three relational operator blocks in the model:

• Relational Operator 1 compares the value of computed horsepower to zero and outputs a Boolean.
• Relational Operator 2 compares the value of engine demanded torque percentage to zero and

outputs a Boolean.
• Relational Operator 3 compares the value of the outputs from Relational Operators 1 and 2 and

outputs a Boolean to trigger the state of the Fault Indicator lamp.

Vehicle Dashboard

The Vehicle Dashboard consists of the speed dial showing the engine RPM, the two gauges showing
the computed value of horsepower and the engine percent demanded torque, and the Fault Indicator
lamp.

Create the Channel for Replay

Create the CAN channel to replay the messages using the canChannel function.

replayChannel = canChannel("MathWorks","Virtual 1",2);

Set Model Parameters and Start the Simulation

Assign the simulation time and start the simulation.

set_param("demoVNTSL_J1939ReplayExample","StopTime","inf");
set_param("demoVNTSL_J1939ReplayExample","SimulationCommand","start");

 Replay J1939 Logged Field Data to a Simulation

14-217

Pause until the simulation is fully started.

while strcmp(get_param("demoVNTSL_J1939ReplayExample","SimulationStatus"),"stopped")
end

Start the CAN Channel and Replay the Data

Start the MATLAB CAN channel.

start(replayChannel);
pause(2);

Replay the data acquired from the BLF-file. The replay operation runs for approximately 45 seconds.

replay(replayChannel,canData);

Simulation Overview

During the running of this example, observe the Simulink model. There will be changes in value in the
gauges and the red-green light transition of the Fault Indicator lamp in the Vehicle Dashboard
section.

The J1939 Receive block receives the EEC1_EMS PG from MATLAB, decodes the signals of interest,
and passes them to the Horsepower Estimator Algorithm. After the horsepower is computed,
Relational Operator 1 compares its values to zero to determine the direction. The J1939 Receive block
also passes the Engine Demanded Percent Torque to Relational Operator 2. Relational Operator 2
compares its values to zero to determine the direction.

The output is a Boolean 1 if the value is greater than or equal to zero, or 0 if it is less than zero
(negative).

Relational Operator 3 takes the outputs of the earlier two relational operators and equates them. If
the value for both the blocks is 0 or 1, i.e., positive horsepower and positive torque (1), or negative
horsepower and negative torque (0), it provides an output of 1, which in turn triggers the green light
of the Fault Indicator lamp. However, if the value for either of the earlier relational operator blocks is
opposite to the other one, i.e., positive horsepower (1) and negative torque (0), or negative
horsepower (0) and positive torque (1), it provides an output of 0, which in turn triggers the red light
of the Fault Indicator lamp. These observations are helpful in determining whether the algorithm is
faulty based on the field data, and you can further analyze the algorithm.

Stop the CAN Channel

stop(replayChannel);

Stop the Simulation

set_param("demoVNTSL_J1939ReplayExample","SimulationCommand","stop");

14 Vehicle Network Toolbox Examples

14-218

Calibrate XCP Characteristics
This example shows how to use the XCP protocol capability to connect and calibrate available
characteristic data from a Simulink model deployed to a Windows executable. The example writes to
modify the parameters of the model using TCP and direct memory access, and compares the
measurements before and after calibration. XCP is a high-level protocol used for accessing and
modifying internal parameters and variables of a model, algorithm, or ECU. For more information,
refer to the ASAM standards.

Algorithm Overview

The algorithm used in this example is a Simulink model built and deployed as an XCP server. The
model has already been compiled and is available to run in the file
XCPServerSineWaveGenerator.exe. Additionally, the A2L-file
XCPServerSineWaveGenerator.a2l is provided as an output of that build process. The model
contains three measurements and two characteristics, accessible via XCP. Because the model is
already deployed, Simulink is not required to run this example. The following image illustrates the
model.

The signal SineAfterGain is obtained by using the multiplier Gain to scale the source signal Sine,
and the signal SineAfterTable is obtained by using the 1-D look-up table to modify the source

 Calibrate XCP Characteristics

14-219

https://www.asam.net/standards/detail/mcd-1-xcp/

signal Sine. Calibrating the parameter Gain and the 1-D look-up table produces different
SineAfterGain and SineAfterTable waveforms, correspondingly.

For details about how to build a Simulink model, including an XCP server and generating an A2L-file,
see “Export ASAP2 File for Data Measurement and Calibration” (Simulink Coder).

Run the XCP Server Model

To communicate with the XCP server, the deployed model must be run. By using the system function,
you can execute the XCPServer.exe from inside MATLAB. The function requires constructing an
argument list pointing to the executable. A separate command window opens and shows running
outputs from the server.

sysCommand = ['"', fullfile(pwd, 'XCPServerSineWaveGenerator.exe'),'"', ' &'];
system(sysCommand);

Open the A2L-File

An A2L-file is required to establish a connection to the XCP server. The A2L-file describes all the
functionality and capability that the XCP server provides, as well as the details of how to connect to
the server. Use the xcpA2L function to open the A2L-file that describes the server model.

a2lInfo = xcpA2L("XCPServerSineWaveGenerator.a2l")

a2lInfo =
 A2L with properties:

 File Details
 FileName: 'XCPServerSineWaveGenerator.a2l'
 FilePath: 'C:\Users\siyingl\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex09112476\XCPServerSineWaveGenerator.a2l'
 ServerName: 'ModuleName'
 Warnings: [0×0 string]

 Parameter Details
 Events: {'100 ms'}
 EventInfo: [1×1 xcp.a2l.Event]
 Measurements: {'Sine' 'SineAfterGain' 'SineAfterTable' 'XCPServer_DW.lastCos' 'XCPServer_DW.lastSin' 'XCPServer_DW.systemEnable'}
 MeasurementInfo: [6×1 containers.Map]
 Characteristics: {'Gain' 'ydata'}
 CharacteristicInfo: [2×1 containers.Map]
 AxisInfo: [1×1 containers.Map]
 RecordLayouts: [4×1 containers.Map]
 CompuMethods: [3×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [0×1 containers.Map]

 XCP Protocol Details
 ProtocolLayerInfo: [1×1 xcp.a2l.ProtocolLayer]
 DAQInfo: [1×1 xcp.a2l.DAQ]
 TransportLayerCANInfo: [0×0 xcp.a2l.XCPonCAN]
 TransportLayerUDPInfo: [0×0 xcp.a2l.XCPonIP]
 TransportLayerTCPInfo: [1×1 xcp.a2l.XCPonIP]

TCP is the transport protocol used to communicate with the XCP server. Details for the TCP
connection, such as the IP address and port number, are contained in the TransportLayerTCPInfo
property.

14 Vehicle Network Toolbox Examples

14-220

a2lInfo.TransportLayerTCPInfo

ans =
 XCPonIP with properties:
 CommonParameters: [1×1 xcp.a2l.CommonParameters]
 TransportLayerInstance: ''
 Port: 17725
 Address: 2.1307e+09
 AddressString: '127.0.0.1'

Create an XCP Channel

To create an active XCP connection to the server, use the xcpChannel function. The function
requires a reference to the server A2L-file and the type of transport protocol to use for messaging
with the server.

xcpCh = xcpChannel(a2lInfo, "TCP")

xcpCh =
 Channel with properties:

 ServerName: 'ModuleName'
 A2LFileName: 'XCPServerSineWaveGenerator.a2l'
 TransportLayer: 'TCP'
 TransportLayerDevice: [1×1 struct]
 SeedKeyDLL: []

Connect to the Server

To make communication with the server active, use the connect function.

connect(xcpCh)

View Available Characteristics from A2L-File

A characteristic in XCP represents a tunable parameter in the memory of the model. Characteristics
available for calibration are defined in the A2L-file and can be found in the Characteristics
property. Note that the parameter Gain is the multiplier and ydata specifies the output data points
of the 1-D look-up table.

a2lInfo.Characteristics

ans = 1×2 cell
 {'Gain'} {'ydata'}

a2lInfo.CharacteristicInfo("Gain")

ans =
 Characteristic with properties:
 Name: 'Gain'
 LongIdentifier: ''
 CharacteristicType: VALUE
 ECUAddress: 549960
 Deposit: [1×1 xcp.a2l.RecordLayout]
 MaxDiff: 0
 Conversion: [1×1 xcp.a2l.CompuMethod]

 Calibrate XCP Characteristics

14-221

 LowerLimit: -5
 UpperLimit: 5
 Dimension: 1
 AxisConversion: {1×0 cell}
 BitMask: []
 ByteOrder: MSB_LAST
 Discrete: []
 ECUAddressExtension: 0
 Format: ''
 Number: []
 PhysUnit: ''

a2lInfo.CharacteristicInfo("ydata")

ans =
 Characteristic with properties:
 Name: 'ydata'
 LongIdentifier: 'Y data'
 CharacteristicType: CURVE
 ECUAddress: 550024
 Deposit: [1×1 xcp.a2l.RecordLayout]
 MaxDiff: 0
 Conversion: [1×1 xcp.a2l.CompuMethod]
 LowerLimit: -2
 UpperLimit: 2
 Dimension: 7
 AxisConversion: {[1×1 xcp.a2l.CompuMethod]}
 BitMask: []
 ByteOrder: MSB_LAST
 Discrete: []
 ECUAddressExtension: 0
 Format: ''
 Number: []
 PhysUnit: ''

Inspect Preloaded Characteristic Values

Read the current value of the characteristic Gain. The readCharacteristic function performs a
direct read from the server for a given characteristic.

initialGain = readCharacteristic(xcpCh, "Gain")

initialGain = 2

Read the current 1-D look-up table characteristic using readAxis and readCharacteristic, then
plot the mapping. This table effectively maps any positive input value to zero output.

inputBreakpoints = readAxis(xcpCh, "xdata")

inputBreakpoints = 1×7

 -1.0000 -0.5000 -0.2000 0 0.2000 0.5000 1.0000

outputPoints = readCharacteristic(xcpCh, "ydata")

outputPoints = 1×7

14 Vehicle Network Toolbox Examples

14-222

 -1.0000 -0.5000 -0.2000 0 0 0 0

plot(inputBreakpoints, outputPoints);
title("Initial 1-D Look-up Table Map");
xlabel("Input Value");
ylabel("Output Value");

Create a Measurement List

This example explores the value of the measurement Sine, unmodified and modified by the two
characteristics. To visualize the continuously changing value of Sine pre- and post-calibration,
acquire measurement data values using a DAQ list. Use the createMeasurementList function to
create a DAQ list containing all Sine-based measurements available from the server.

createMeasurementList(xcpCh, "DAQ", "100 ms", ["Sine", "SineAfterGain", "SineAfterTable"])

Obtain Measurements Before Calibration

Use the startMeasurement function and stopMeasurement function to run the DAQ list for a short
period of time.

 Calibrate XCP Characteristics

14-223

startMeasurement(xcpCh);
pause(3);
stopMeasurement(xcpCh);

To retrieve the data acquired by the DAQ list for all the Sine-based measurements, use the readDAQ
function. The number of retrieved samples during 3 seconds at 100 ms event is expected to be 30, but
because the XCP server runs on Windows, which is not a real-time operating system, the actual
number of retrieved samples might be less than 30, depending on how occupied the operating system
is.

sine = readDAQ(xcpCh, "Sine");
sineAfterGain = readDAQ(xcpCh, "SineAfterGain");
sineAfterTable = readDAQ(xcpCh, "SineAfterTable");

Inspect Measurements Before Calibration

Plot the SineAfterGain measurement against the base Sine measurement. The value after Gain is
boosted by a factor of 2, based on the original measurement, because the preloaded value of the
characteristic Gain is 2, as shown previously.

plot(sine, "o-"); hold on;
plot(sineAfterGain, "*-"); hold off;
title("Before Calibration: Sine Signal vs Sine Signal after Gain");
legend("Original", "After Gain");
xlabel("Data Point");
ylabel("Data Value");

14 Vehicle Network Toolbox Examples

14-224

Plot the SineAfterTable measurement against the base Sine measurement. Any positive value of
the original measurement is mapped to zero according to the preloaded 1-D look-up table, therefore
the modified signal looks truncated and does not have any positive values.

plot(sine, "o-"); hold on;
plot(sineAfterTable, "*-"); hold off;
title("Before Calibration: Sine Signal vs Sine Signal after Table");
legend("Original", "After Table");
xlabel("Data Point");
ylabel("Data Value");

 Calibrate XCP Characteristics

14-225

Calibrate the Gain and 1-D Look-up Table

Write a new value to the charateristic Gain using writeCharacteristic, and perform a read to
verify the change using readCharacteristic.

writeCharacteristic(xcpCh, "Gain", 0.5);
newGain = readCharacteristic(xcpCh, "Gain")

newGain = 0.5000

Write new data points to the output of the 1-D look-up table using writeCharacteristic.

writeCharacteristic(xcpCh, "ydata", [0 0 0 0 0.2 0.5 1]);

Read the new 1-D look-up table data using readAxis and readCharacteristic, then plot the
mapping. Now the table effectively maps any negative input value to zero output.

inputBreakpoints = readAxis(xcpCh, "xdata")

inputBreakpoints = 1×7

14 Vehicle Network Toolbox Examples

14-226

 -1.0000 -0.5000 -0.2000 0 0.2000 0.5000 1.0000

newOutputPoints = readCharacteristic(xcpCh, "ydata")

newOutputPoints = 1×7

 0 0 0 0 0.2000 0.5000 1.0000

plot(inputBreakpoints, newOutputPoints);
title("New 1-D Look-up Table Map");
xlabel("Input Value");
ylabel("Output Value");

Obtain Measurements after Calibration

Use the startMeasurement function and stopMeasurement function to run the DAQ list for a short
period of time.

 Calibrate XCP Characteristics

14-227

startMeasurement(xcpCh);
pause(3);
stopMeasurement(xcpCh);

To retrieve the data acquired by the DAQ list for all the Sine-based measurements, use the readDAQ
function.

sine = readDAQ(xcpCh, "Sine");
sineAfterGain = readDAQ(xcpCh, "SineAfterGain");
sineAfterTable = readDAQ(xcpCh, "SineAfterTable");

Inspect Measurements After Calibration

Plot the SineAfterGain measurement against the base Sine measurement. Now the value after
Gain is decreased by a factor of 2, based on the original measurement, because the value of the
characteristic Gain is set to 0.5 after calibration.

plot(sine, "o-"); hold on;
plot(sineAfterGain, "*-"); hold off;
title("After Calibration: Sine Signal vs Sine Signal after Gain");
legend("Original", "After Gain");
xlabel("Data Point");
ylabel("Data Value");

14 Vehicle Network Toolbox Examples

14-228

Plot the SineAfterTable measurement against the base Sine measurement. Any negative value of
the original measurement is mapped to zero according to the new 1-D look-up table, therefore the
modified signal looks truncated differently and does not have any negative values.

plot(sine, "o-"); hold on;
plot(sineAfterTable, "*-"); hold off;
title("After Calibration: Sine Signal vs Sine Signal after Table");
legend("Original", "After Table");
xlabel("Data Point");
ylabel("Data Value");

 Calibrate XCP Characteristics

14-229

Disconnect from the Server

To deactivate communication with the server, use the disconnect function. The XCP server can be
safely closed after disconnecting.

disconnect(xcpCh)

Clean Up

clear a2lInfo

14 Vehicle Network Toolbox Examples

14-230

Get Started with A2L-Files
This example shows how to access and view information stored in A2L-files.

XCP (Universal Measurement and Calibration Protocol) is a network protocol commonly used in the
automotive industry for connecting calibration systems to electronic control units (ECUs). The
calibration system is commonly referred to as the client and the ECU as the server. XCP enables read
and write access to variables and memory contents at runtime.

Entire datasets can be acquired or stimulated synchronous to events triggered by timers or operating
conditions. The XCP protocol specification is defined by ASAM (Association for Standardization of
Automation and Measuring Systems), and allows for a variety of transport layers such as XCP over
CAN or Ethernet.

An A2L-file is a structured ASCII text file that contains measurement, calibration, and event
definitions used with XCP for acquiring and stimulating data. This example uses an A2L-file
configured for XCP over Ethernet. An A2L-file follows the ASAM MCD-2 MC standard (ASAP2), which
defines the description format of internal server variables used in measurement and calibration.
The .a2l file extension is an abbreviation of "ASAM MCD-2 MC Language."

Open an A2L-File

An A2L-file contains measurement, calibration, and event definitions for one or more ECUs. If you
intend to read data from or write data directly to memory of an XCP server, a necessary first step is to
open the A2L-file representing that system. To access an A2L-file, create a file object in your MATLAB
session using the xcpA2L function:

a2lfile = xcpA2L("XCPServerSineWaveGenerator.a2l")

a2lfile =
 A2L with properties:

 File Details
 FileName: 'XCPServerSineWaveGenerator.a2l'
 FilePath: 'C:\examplefiles\XCPServerSineWaveGenerator.a2l'
 ServerName: 'ModuleName'
 Warnings: [0×0 string]

 Parameter Details
 Events: {'100 ms'}
 EventInfo: [1×1 xcp.a2l.Event]
 Measurements: {'Sine' 'SineAfterGain' 'SineAfterTable' 'XCPServer_DW.lastCos' 'XCPServer_DW.lastSin' 'XCPServer_DW.systemEnable'}
 MeasurementInfo: [6×1 containers.Map]
 Characteristics: {'Gain' 'ydata'}
 CharacteristicInfo: [2×1 containers.Map]
 AxisInfo: [1×1 containers.Map]
 RecordLayouts: [4×1 containers.Map]
 CompuMethods: [3×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [0×1 containers.Map]

 XCP Protocol Details
 ProtocolLayerInfo: [1×1 xcp.a2l.ProtocolLayer]
 DAQInfo: [1×1 xcp.a2l.DAQ]
 TransportLayerCANInfo: [0×0 xcp.a2l.XCPonCAN]

 Get Started with A2L-Files

14-231

https://www.asam.net/
https://www.asam.net/
https://www.asam.net/standards/detail/mcd-2-mc/

 TransportLayerUDPInfo: [0×0 xcp.a2l.XCPonIP]
 TransportLayerTCPInfo: [1×1 xcp.a2l.XCPonIP]

Access Measurement Information

A measurement describes the properties of a recordable, server-internal variable. This variable can
be a scalar or an array. Bit masks and bit operations can be applied to the measurement. The address,
byte order, computation method, upper and lower limits, and other properties are described. The
standard also allows writing to measurement objects to stimulate the server during runtime.

View all available measurements via the Measurements property of the A2L-file object.

a2lfile.Measurements

ans = 1×6 cell
 {'Sine'} {'SineAfterGain'} {'SineAfterTable'} {'XCPServer_DW.lastCos'} {'XCPServer_DW.lastSin'} {'XCPServer_DW.systemEnable'}

Get information about the Sine measurement using the getMeasurementInfo function. This
function returns information about the specified measurement from the specified A2L-file.

measInfo = getMeasurementInfo(a2lfile,"Sine")

measInfo =
 Measurement with properties:
 Name: 'Sine'
 LongIdentifier: 'Sine wave signal'
 LocDataType: FLOAT64_IEEE
 Conversion: [1×1 xcp.a2l.CompuMethod]
 Resolution: 0
 Accuracy: 0
 LowerLimit: -3
 UpperLimit: 3
 Dimension: 1
 ArraySize: []
 BitMask: []
 BitOperation: [1×0 xcp.a2l.BitOperation]
 ByteOrder: MSB_LAST
 Discrete: []
 ECUAddress: 1586712
 ECUAddressExtension: 0
 Format: ''
 Layout: ROW_DIR
 PhysUnit: ''
 ReadWrite: []

Using an xcpChannel you can read and write measurement data directly to memory of an XCP
server with the readMeasurement and writeMeasurement functions, respectively. The
readMeasurement function reads and scales a value for the specified measurement through the
XCP channel object. This action performs a direct read from memory of the server. The
writeMeasurement function scales and writes a value for the specified measurement through the
XCP channel object. This action performs a direct write to memory of the server.

14 Vehicle Network Toolbox Examples

14-232

Access Characteristic Information

A characteristic describes the properties of a tunable parameter (Calibration). Possible types of
tunable parameters include scalars, strings, and lookup tables. The address, record layout,
computation method, upper and lower calibration limits are defined.

View all available characteristics by name via the Characteristics property of the A2L-file object.

a2lfile.Characteristics

ans = 1×2 cell
 {'Gain'} {'ydata'}

Get information about the Gain characteristic using the getCharacteristicInfo function. This
function returns information about the specified characteristic from the specified A2L-file.

charInfo = getCharacteristicInfo(a2lfile,"Gain")

charInfo =
 Characteristic with properties:
 Name: 'Gain'
 LongIdentifier: ''
 CharacteristicType: VALUE
 ECUAddress: 549960
 Deposit: [1×1 xcp.a2l.RecordLayout]
 MaxDiff: 0
 Conversion: [1×1 xcp.a2l.CompuMethod]
 LowerLimit: -5
 UpperLimit: 5
 Dimension: 1
 AxisConversion: {1×0 cell}
 BitMask: []
 ByteOrder: MSB_LAST
 Discrete: []
 ECUAddressExtension: 0
 Format: ''
 Number: []
 PhysUnit: ''

Using an xcpChannel you can read and write characteristic data directly to memory of an XCP
server using the readCharacteristic and writeCharacteristic functions, respectively. The
readCharacteristic function reads and scales a value for the specified characteristic through
the XCP channel. This action performs a direct read from memory of the server. The
writeCharacteristic function scales and writes a value for the specified characteristic
through the XCP channel object. This action performs a direct write to memory of the server.

Access Event Information

Data can be acquired or stimulated synchronous to events triggered by timers or operating
conditions.

View all available events via the Events property of the A2L-file object.

a2lfile.Events

 Get Started with A2L-Files

14-233

ans = 1×1 cell array
 {'100 ms'}

Get information about the 100 ms event using the getEventInfo function. This function returns
information about the specified event from the specified A2L-file.

eventInfo = getEventInfo(a2lfile, "100 ms")

eventInfo =
 Event with properties:
 Name: '100 ms'
 ShortName: '100 ms'
 ChannelNumber: 0
 Direction: DAQ
 MaxDAQList: 255
 ChannelTimeCycle: 1
 ChannelTimeUnit: 8
 ChannelPriority: 0
 ChannelTimeCycleInSeconds: 0.1000

Using an xcpChannel and specifying an event, you can acquire and stimulate measurements using
the available XCP functions, such as readDAQ and writeSTIM. The use of events to acquire
measurement data is further explored in the example “Read XCP Measurements with Dynamic DAQ
Lists” on page 14-247.

View Protocol Layer Information

The protocol layer defines some of the core operation and organization of the messaging between the
XCP server and client. This includes the sizing and structure of the bytes in XCP command and
response messages.

Display protocol layer details via the ProtocolLayerInfo property of the A2L-file object.

a2lfile.ProtocolLayerInfo

ans =
 ProtocolLayer with properties:
 T1: 1000
 T2: 200
 T3: 0
 T4: 0
 T5: 0
 T6: 0
 T7: 0
 MaxCTO: 255
 MaxDTO: 65532
 ByteOrder: BYTE_ORDER_MSB_LAST
 AddressGranularity: ADDRESS_GRANULARITY_BYTE

View DAQ Information

XCP offers the synchronous data acquisition (DAQ) mode, as described in ASAM MDC-2 MC. DAQ is
one of the main XCP services that a server can provide. XCP DAQ events can be defined by the client
to trigger the sampling of measurement data. When the algorithm in the server reaches the location

14 Vehicle Network Toolbox Examples

14-234

https://www.asam.net/standards/detail/mcd-2-mc/

of such a sampling event, the server collects the values of the measurement parameters and sends
them to the client. Display DAQ details via the DAQInfo property of the A2L-file object.

a2lfile.DAQInfo

ans =
 DAQ with properties:
 ConfigType: DYNAMIC
 MaxDAQ: 65535
 MaxEventChannels: 128
 MinDAQ: 0
 OptimizationType: OPTIMISATION_TYPE_DEFAULT
 AddressExtension: ADDRESS_EXTENSION_FREE
 IdentificationFieldType: IDENTIFICATION_FIELD_TYPE_ABSOLUTE
 GranularityODTEntrySizeDAQ: GRANULARITY_ODT_ENTRY_SIZE_DAQ_BYTE
 MaxODTEntrySizeDAQ: 255
 OverloadIndication: NO_OVERLOAD_INDICATION
 DAQAlternatingSupported: []
 PrescalerSupported: []
 ResumeSupported: []
 STIM: [1×0 xcp.a2l.STIM]
 Timestamp: [1×1 xcp.a2l.TimestampSupported]
 Events: [1×1 xcp.a2l.Event Map]

View Transport Layer Information

The XCP packet is embedded in a frame of the transport layer, which is a packet of the chosen
transport protocol. An A2L-file provides transport layer information for the supported protocols. If the
transport layer information for a particular protocol is empty, the server does not support that
transport. The XCP protocol specification allows for a variety of transport layers, such as CAN or
Ethernet.

This example uses an A2L-file configured for XCP over Ethernet, which requires an IP address and a
port. These are specified in the A2L-file.

Display transport layer details via the TransportLayerTCPInfo property of the A2L-file object.

a2lfile.TransportLayerTCPInfo

ans =
 XCPonIP with properties:
 CommonParameters: [1×1 xcp.a2l.CommonParameters]
 TransportLayerInstance: ''
 Port: 17725
 Address: 2.1307e+09
 AddressString: '127.0.0.1'

Close the A2L-File

Close access to the A2L-file by clearing its variable from the workspace.

clear a2lfile

 Get Started with A2L-Files

14-235

Analyze Data Using MDF Datastore and Tall Arrays
This example shows how to work with a big data set using tall arrays and the MDF datastore feature.
Tall arrays are commonly used to perform calculations on different types of data that do not fit in
memory.

This example first operates on a small subset of data and then scales up to analyze the entire data
set. Although the data set used here might not represent the actual size in real-world applications,
the same analysis technique can scale up further to work on data sets so large that they cannot be
read into memory.

To learn more about tall arrays, see the example “Analyze Big Data in MATLAB Using Tall Arrays”.

Introduction to Tall Arrays

Tall arrays and tall tables are used to work with out-of-memory data that has any number of rows.
Using tall arrays and tables, you can work with large data sets in a manner similar to in-memory
MATLAB arrays.

The difference is that tall arrays typically remain unevaluated until the calculations are requested to
be performed. This deferred evaluation enables MATLAB to combine the queued calculations where
possible and take the minimum number of passes through the data.

Create an MDF Datastore

An MDF datastore can be used to read and process homogeneous data stored in multiple MDF-files as
a single entity. If the data set is too large to fit in memory, a datastore also makes it possible to work
with the data set in smaller blocks that individually fit in memory. This capability can be further
extended by tall arrays which enable working with out-of-memory data backed up by a datastore
using common functions.

Create an MDF datastore using the mdfDatastore function by selecting MDF-file
EngineData_MDF_TallArray.mf4 in the current workflow directory. This file contains time-
stamped data logged from a Simulink model representing an engine plant and controller connected to
a dynamometer.

mds = mdfDatastore("EngineData_MDF_TallArray.mf4")

mds =
 MDFDatastore with properties:

 DataStore Details
 Files: {
 ' ...\Documents\MATLAB\Examples\vnt-ex08773747\EngineData_MDF_TallArray.mf4'
 }
 ChannelGroups:
 ChannelGroupNumber AcquisitionName Comment ... and 4 more columns
 __________________ _______________ __________

 1 {1×1 cell} {1×1 cell}

 Channels:
 ChannelGroupNumber ChannelName DisplayName ... and 10 more columns
 __________________ _________________ ___________

14 Vehicle Network Toolbox Examples

14-236

 1 {'EngineSpeed' } ''
 1 {'TorqueCommand'} ''
 1 {'EngineTorque' } ''

 ... and 1 more rows

 Options
 SelectedChannelNames: {
 'EngineSpeed';
 'TorqueCommand';
 'EngineTorque'
 ... and 1 more
 }
 SelectedChannelGroupNumber: 1
 ReadSize: 'file'
 Conversion: Numeric

It is possible to further configure the MDF datastore to control what and how data is read from the
MDF-file. By default, the first channel group is selected and all channels from the group are read.

mds.SelectedChannelGroupNumber

ans = 1

mds.SelectedChannelNames

ans = 4×1 string
 "EngineSpeed"
 "TorqueCommand"
 "EngineTorque"
 "t"

Configure the MDF datastore to select only three variables of interest: EngineSpeed,
TorqueCommand, and EngineTorque.

mds.SelectedChannelNames = ["EngineSpeed", "TorqueCommand", "EngineTorque"]

mds =
 MDFDatastore with properties:

 DataStore Details
 Files: {
 ' ...\Documents\MATLAB\Examples\vnt-ex08773747\EngineData_MDF_TallArray.mf4'
 }
 ChannelGroups:
 ChannelGroupNumber AcquisitionName Comment ... and 4 more columns
 __________________ _______________ __________

 1 {1×1 cell} {1×1 cell}

 Channels:
 ChannelGroupNumber ChannelName DisplayName ... and 10 more columns
 __________________ _________________ ___________

 1 {'EngineSpeed' } ''
 1 {'TorqueCommand'} ''

 Analyze Data Using MDF Datastore and Tall Arrays

14-237

 1 {'EngineTorque' } ''

 ... and 1 more rows

 Options
 SelectedChannelNames: {
 'EngineSpeed';
 'TorqueCommand';
 'EngineTorque'
 }
 SelectedChannelGroupNumber: 1
 ReadSize: 'file'
 Conversion: Numeric

Preview the selected data using the preview function.

preview(mds)

ans=8×3 timetable
 Time EngineSpeed TorqueCommand EngineTorque
 ______________ ___________ _____________ ____________

 0 sec 0 0 47.153
 0 sec 2.37e-26 0 47.153
 1.47e-05 sec 0.11056 47.158 47.158
 8.85e-05 sec 0.66312 48.708 48.708
 0.00010107 sec 0.75762 49.77 49.77
 0.00010107 sec 0.75762 49.77 49.77
 0.0001405 sec 1.053 39.967 39.967
 0.00017993 sec 1.3482 23.143 23.143

Create Tall Array

Tall arrays are similar to in-memory MATLAB arrays, except that they can have any number of rows.
Because the MDF datastore mds contains time-stamped tabular data, the tall function returns a tall
timetable containing data from the datastore.

tt = tall(mds)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

tt =

 M×3 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque
 ______________ ___________ _____________ ____________

 0 sec 0 0 47.153
 0 sec 2.37e-26 0 47.153
 1.47e-05 sec 0.11056 47.158 47.158
 8.85e-05 sec 0.66312 48.708 48.708
 0.00010107 sec 0.75762 49.77 49.77
 0.00010107 sec 0.75762 49.77 49.77
 0.0001405 sec 1.053 39.967 39.967

14 Vehicle Network Toolbox Examples

14-238

 0.00017993 sec 1.3482 23.143 23.143
 : : : :
 : : : :

The display includes the first several rows of data. The timetable size may display as M×3 to indicate
that the number of rows is not yet known to MATLAB.

Perform Calculations on Tall Array

You can work with tall arrays and tall tables similar to in-memory MATLAB arrays and tables.
However, MATLAB does not perform most operations on tall arrays, and defers the actual
computations until the output is requested.

It is common to work with unevaluated tall arrays and request output only when required. MATLAB
does not know the content or size of an unevaluated tall array until you request that it be evaluated
and displayed.

Calculate median, minimum, and maximum values of the TorqueCommand variable. Note that the
results are not immediately evaluated.

medianTorqueCommand = median(tt.TorqueCommand)

medianTorqueCommand =

 tall double

 ?

Preview deferred. Learn more.

minTorqueCommand = min(tt.TorqueCommand)

minTorqueCommand =

 tall double

 ?

Preview deferred. Learn more.

maxTorqueCommand = max(tt.TorqueCommand)

maxTorqueCommand =

 tall double

 ?

Preview deferred. Learn more.

Gather Results into Workspace

The gather function forces evaluation of all queued operations and brings the resulting output back
into memory.

Perform the queued operations, median, min, max, and evaluate the answers. If the calculation
requires several passes through the data, MATLAB determines the minimum number of passes to
save execution time and displays this information at the command line.

 Analyze Data Using MDF Datastore and Tall Arrays

14-239

[medianTorqueCommand, minTorqueCommand, maxTorqueCommand] = gather(medianTorqueCommand, minTorqueCommand, maxTorqueCommand)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 4: Completed in 6.7 sec
- Pass 2 of 4: Completed in 0.73 sec
- Pass 3 of 4: Completed in 1.3 sec
- Pass 4 of 4: Completed in 0.62 sec
Evaluation completed in 12 sec

medianTorqueCommand = 116.2799

minTorqueCommand = 0

maxTorqueCommand = 232.9807

Select Subset of Tall Array

Use head to select a subset of 10,000 rows from the data for prototyping code before scaling to the
full data set.

ttSubset = head(tt, 10000)

ttSubset =

 10,000×3 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque
 ______________ ___________ _____________ ____________

 0 sec 0 0 47.153
 0 sec 2.37e-26 0 47.153
 1.47e-05 sec 0.11056 47.158 47.158
 8.85e-05 sec 0.66312 48.708 48.708
 0.00010107 sec 0.75762 49.77 49.77
 0.00010107 sec 0.75762 49.77 49.77
 0.0001405 sec 1.053 39.967 39.967
 0.00017993 sec 1.3482 23.143 23.143
 : : : :
 : : : :

Remove Duplicate Rows in Tall Array

Timetable rows are duplicates if they have the same row times and the same data values. Use the
unique function to remove duplicate rows from the subset tall timetable.

ttSubset = unique(ttSubset)

ttSubset =

 9,968×3 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque
 ______________ ___________ _____________ ____________

 0 sec 0 0 47.153
 0 sec 2.37e-26 0 47.153
 1.47e-05 sec 0.11056 47.158 47.158
 8.85e-05 sec 0.66312 48.708 48.708
 0.00010107 sec 0.75762 49.77 49.77

14 Vehicle Network Toolbox Examples

14-240

 0.0001405 sec 1.053 39.967 39.967
 0.00017993 sec 1.3482 23.143 23.143
 0.00037708 sec 2.8228 23.143 -0.021071
 : : : :
 : : : :

Calculate Engine Power

Calculate engine power in kilowatts (kW) with EngineSpeed and EngineTorque using the formula
P kW = π ⋅ N rpm ⋅ T Nm

30 ⋅ 1000 . Save the results to a new variable named EnginePower in the tall
timetable.

ttSubset.EnginePower = (pi * ttSubset.EngineSpeed .* ttSubset.EngineTorque) / (30 * 1000)

ttSubset =

 9,968×4 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque EnginePower
 ______________ ___________ _____________ ____________ ___________

 0 sec 0 0 47.153 0
 0 sec 2.37e-26 0 47.153 1.1703e-28
 1.47e-05 sec 0.11056 47.158 47.158 0.00054599
 8.85e-05 sec 0.66312 48.708 48.708 0.0033824
 0.00010107 sec 0.75762 49.77 49.77 0.0039487
 0.0001405 sec 1.053 39.967 39.967 0.0044072
 0.00017993 sec 1.3482 23.143 23.143 0.0032675
 0.00037708 sec 2.8228 23.143 -0.021071 -6.2287e-06
 : : : : :
 : : : : :

The topkrows function for tall arrays returns the top k rows in sorted order. Obtain the top 20 rows
with maximum EnginePower values.

maxEnginePower = topkrows(ttSubset, 20, "EnginePower")

maxEnginePower =

 20×4 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque EnginePower
 _________ ___________ _____________ ____________ ___________

 15.17 sec 750 78.052 78.052 6.1302
 15.16 sec 750 77.841 77.841 6.1136
 15.15 sec 750 77.556 77.556 6.0912
 15.14 sec 750 77.326 77.326 6.0732
 15.18 sec 750 77.277 77.277 6.0693
 15.13 sec 750 77.157 77.157 6.0599
 15.12 sec 750 77.082 77.082 6.054
 15.11 sec 750 77.067 77.075 6.0534
 : : : : :
 : : : : :

Call the gather function to execute all queued operations and collect the results into memory.

[ttSubset, maxEnginePower] = gather(ttSubset, maxEnginePower)

 Analyze Data Using MDF Datastore and Tall Arrays

14-241

ttSubset=9968×4 timetable
 Time EngineSpeed TorqueCommand EngineTorque EnginePower
 ______________ ___________ _____________ ____________ ___________

 0 sec 0 0 47.153 0
 0 sec 2.37e-26 0 47.153 1.1703e-28
 1.47e-05 sec 0.11056 47.158 47.158 0.00054599
 8.85e-05 sec 0.66312 48.708 48.708 0.0033824
 0.00010107 sec 0.75762 49.77 49.77 0.0039487
 0.0001405 sec 1.053 39.967 39.967 0.0044072
 0.00017993 sec 1.3482 23.143 23.143 0.0032675
 0.00037708 sec 2.8228 23.143 -0.021071 -6.2287e-06
 0.00076951 sec 5.7492 15 -0.042938 -2.5851e-05
 0.0014014 sec 10.437 15 -0.078013 -8.5265e-05
 0.0023449 sec 17.382 15 -0.13009 -0.00023679
 0.0036773 sec 27.079 15 -0.20304 -0.00057575
 0.0054808 sec 40 15 -0.30067 -0.0012595
 0.0072843 sec 52.691 15 -0.39703 -0.0021907
 0.01 sec 71.373 15 -0.53973 -0.0040341
 0.013562 sec 95.119 15 51.176 0.50976
 ⋮

maxEnginePower=20×4 timetable
 Time EngineSpeed TorqueCommand EngineTorque EnginePower
 _________ ___________ _____________ ____________ ___________

 15.17 sec 750 78.052 78.052 6.1302
 15.16 sec 750 77.841 77.841 6.1136
 15.15 sec 750 77.556 77.556 6.0912
 15.14 sec 750 77.326 77.326 6.0732
 15.18 sec 750 77.277 77.277 6.0693
 15.13 sec 750 77.157 77.157 6.0599
 15.12 sec 750 77.082 77.082 6.054
 15.11 sec 750 77.067 77.075 6.0534
 15.1 sec 750 77.067 77.067 6.0528
 15.09 sec 750 77.059 77.059 6.0522
 15.08 sec 750 77.051 77.051 6.0516
 15.07 sec 750 77.042 77.042 6.0509
 15.06 sec 750 77.034 77.034 6.0502
 15.05 sec 750 77.025 77.025 6.0495
 15.04 sec 750 77.016 77.016 6.0488
 15.03 sec 750 77.006 77.006 6.0481
 ⋮

Visualize Data in Tall Array

Visualize the EngineTorque and EnginePower signals over time in a plot with two y-axes.

figure
yyaxis left
plot(ttSubset.Time, ttSubset.EngineTorque)
title("Engine Torque and Engine Power Over Time")
xlabel("Time")
ylabel("Engine Torque [Nm]")

yyaxis right

14 Vehicle Network Toolbox Examples

14-242

plot(ttSubset.Time, ttSubset.EnginePower)
ylabel("Engine Power [kW]")

Scale to Entire Data Set

Instead of using the smaller data returned from head, scale up to apply the same steps on the entire
data set by using the complete tall timetable.

tt = tall(mds)

tt =

 M×3 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque
 ______________ ___________ _____________ ____________

 0 sec 0 0 47.153
 0 sec 2.37e-26 0 47.153
 1.47e-05 sec 0.11056 47.158 47.158
 8.85e-05 sec 0.66312 48.708 48.708
 0.00010107 sec 0.75762 49.77 49.77
 0.00010107 sec 0.75762 49.77 49.77
 0.0001405 sec 1.053 39.967 39.967
 0.00017993 sec 1.3482 23.143 23.143
 : : : :
 : : : :

 Analyze Data Using MDF Datastore and Tall Arrays

14-243

Firstly, remove duplicate rows from the tall timetable.

tt = unique(tt)

tt =

 M×3 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque
 ____ ___________ _____________ ____________

 ? ? ? ?
 ? ? ? ?
 ? ? ? ?
 : : : :
 : : : :

Preview deferred. Learn more.

Secondly, calculate engine power and obtain the top 20 rows with maximum EnginePower values.

tt.EnginePower = (pi * tt.EngineSpeed .* tt.EngineTorque) / (30 * 1000)

tt =

 M×4 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque EnginePower
 ____ ___________ _____________ ____________ ___________

 ? ? ? ? ?
 ? ? ? ? ?
 ? ? ? ? ?
 : : : : :
 : : : : :

Preview deferred. Learn more.

maxEnginePower = topkrows(tt, 20, "EnginePower")

maxEnginePower =

 M×4 tall timetable

 Time EngineSpeed TorqueCommand EngineTorque EnginePower
 ____ ___________ _____________ ____________ ___________

 ? ? ? ? ?
 ? ? ? ? ?
 ? ? ? ? ?
 : : : : :
 : : : : :

Preview deferred. Learn more.

[tt, maxEnginePower] = gather(tt, maxEnginePower)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete

14 Vehicle Network Toolbox Examples

14-244

Evaluation 0% complete

- Pass 1 of 1: Completed in 1.3 sec
Evaluation completed in 1.9 sec

tt=359326×4 timetable
 Time EngineSpeed TorqueCommand EngineTorque EnginePower
 ______________ ___________ _____________ ____________ ___________

 0 sec 0 0 47.153 0
 0 sec 2.37e-26 0 47.153 1.1703e-28
 1.47e-05 sec 0.11056 47.158 47.158 0.00054599
 8.85e-05 sec 0.66312 48.708 48.708 0.0033824
 0.00010107 sec 0.75762 49.77 49.77 0.0039487
 0.0001405 sec 1.053 39.967 39.967 0.0044072
 0.00017993 sec 1.3482 23.143 23.143 0.0032675
 0.00037708 sec 2.8228 23.143 -0.021071 -6.2287e-06
 0.00076951 sec 5.7492 15 -0.042938 -2.5851e-05
 0.0014014 sec 10.437 15 -0.078013 -8.5265e-05
 0.0023449 sec 17.382 15 -0.13009 -0.00023679
 0.0036773 sec 27.079 15 -0.20304 -0.00057575
 0.0054808 sec 40 15 -0.30067 -0.0012595
 0.0072843 sec 52.691 15 -0.39703 -0.0021907
 0.01 sec 71.373 15 -0.53973 -0.0040341
 0.013562 sec 95.119 15 51.176 0.50976
 ⋮

maxEnginePower=20×4 timetable
 Time EngineSpeed TorqueCommand EngineTorque EnginePower
 __________ ___________ _____________ ____________ ___________

 3819.8 sec 5000 217.53 217.53 113.9
 3819.8 sec 5000 217.53 217.53 113.9
 3819.8 sec 5000 217.53 217.53 113.9
 3819.8 sec 5000 217.53 217.53 113.9
 3819.8 sec 5000 217.53 217.53 113.9
 3819.9 sec 5000 217.53 217.53 113.9
 3819.9 sec 5000 217.53 217.53 113.9
 3819.9 sec 5000 217.53 217.53 113.9
 3819.9 sec 5000 217.52 217.52 113.89
 3819.9 sec 5000 217.52 217.52 113.89
 3820 sec 5000 217.52 217.52 113.89
 3820.1 sec 5000 217.52 217.52 113.89
 3820.2 sec 5000 217.52 217.52 113.89
 3820.3 sec 5000 217.52 217.52 113.89
 3820.4 sec 5000 217.52 217.52 113.89
 3820.5 sec 5000 217.52 217.52 113.89
 ⋮

Lastly, visualize the EngineTorque and EnginePower signals over time in a plot with two y-axes.

figure
yyaxis left
plot(tt.Time, tt.EngineTorque)
title("Engine Torque and Engine Power Over Time")
xlabel("Time")

 Analyze Data Using MDF Datastore and Tall Arrays

14-245

ylabel("Engine Torque [Nm]")

yyaxis right
plot(tt.Time, tt.EnginePower)
ylabel("Engine Power [kW]")

Close MDF-File

Close access to the MDF-file by clearing the MDF datastore variable from workspace.

clear mds

14 Vehicle Network Toolbox Examples

14-246

Read XCP Measurements with Dynamic DAQ Lists
This example shows how to use the XCP protocol capability to connect and acquire data from a
Simulink model deployed to a Windows executable. The example reads measurement parameters of
the model using TCP and dynamic DAQ lists. XCP is a high-level protocol used for accessing and
modifying internal parameters and variables of a model, algorithm, or ECU. For more information,
refer to the ASAM standards.

Algorithm Overview

The algorithm used in this example is a Simulink model built and deployed as an XCP server. The
model has already been compiled and is available to run in the file
XCPServerSineWaveGenerator.exe. Additionally, the A2L-file
XCPServerSineWaveGenerator.a2l is provided as an output of that build process. The model
contains three measurements and two characteristics accessible via XCP. Because the model is
already deployed, Simulink is not required to run this example. The following image illustrates the
model.

For details about how to build a Simulink model, including an XCP server and generating an A2L-file,
see “Export ASAP2 File for Data Measurement and Calibration” (Simulink Coder).

 Read XCP Measurements with Dynamic DAQ Lists

14-247

https://www.asam.net/standards/detail/mcd-1-xcp/

Run the XCP Server Model

To communicate with the XCP server, the deployed model must be run. By using the system function,
you can execute the XCPServerSineWaveGenerator.exe from inside MATLAB. The function
requires constructing an argument list pointing to the executable. A separate command window
opens and shows running outputs from the server.

sysCommand = ['"', fullfile(pwd, 'XCPServerSineWaveGenerator.exe'),'"', ' &'];
system(sysCommand);

Open the A2L-File

An A2L-file is required to establish a connection to the XCP server. The A2L-file describes all of the
functionality and capability that the XCP server provides, as well as the details of how to connect to
the server. Use the xcpA2L function to open the A2L-file that describes the server model.

a2lInfo = xcpA2L("XCPServerSineWaveGenerator.a2l")

a2lInfo =
 A2L with properties:

 File Details
 FileName: 'XCPServerSineWaveGenerator.a2l'
 FilePath: 'C:\Users\kuanliu\Documents\MATLAB\Examples\vnt-ex16421241\XCPServerSineWaveGenerator.a2l'
 ServerName: 'ModuleName'
 Warnings: [0×0 string]

 Parameter Details
 Events: {'100 ms'}
 EventInfo: [1×1 xcp.a2l.Event]
 Measurements: {'Sine' 'SineAfterGain' 'SineAfterTable' 'XCPServer_DW.lastCos' 'XCPServer_DW.lastSin' 'XCPServer_DW.systemEnable'}
 MeasurementInfo: [6×1 containers.Map]
 Characteristics: {'Gain' 'ydata'}
 CharacteristicInfo: [2×1 containers.Map]
 AxisInfo: [1×1 containers.Map]
 RecordLayouts: [4×1 containers.Map]
 CompuMethods: [3×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [0×1 containers.Map]

 XCP Protocol Details
 ProtocolLayerInfo: [1×1 xcp.a2l.ProtocolLayer]
 DAQInfo: [1×1 xcp.a2l.DAQ]
 TransportLayerCANInfo: [0×0 xcp.a2l.XCPonCAN]
 TransportLayerUDPInfo: [0×0 xcp.a2l.XCPonIP]
 TransportLayerTCPInfo: [1×1 xcp.a2l.XCPonIP]

TCP is the transport protocol used to communicate with the XCP server. Details for the TCP
connection, such as the IP address and port number, are contained in the TransportLayerTCPInfo
property.

a2lInfo.TransportLayerTCPInfo

ans =
 XCPonIP with properties:
 CommonParameters: [1×1 xcp.a2l.CommonParameters]
 TransportLayerInstance: ''

14 Vehicle Network Toolbox Examples

14-248

 Port: 17725
 Address: 2.1307e+09
 AddressString: '127.0.0.1'

Create an XCP Channel

To create an active XCP connection to the server, use the xcpChannel function. The function
requires a reference to the server A2L-file and the type of transport protocol to use for messaging
with the server.

xcpCh = xcpChannel(a2lInfo, "TCP")

xcpCh =
 Channel with properties:

 ServerName: 'ModuleName'
 A2LFileName: 'XCPServerSineWaveGenerator.a2l'
 TransportLayer: 'TCP'
 TransportLayerDevice: [1×1 struct]
 SeedKeyDLL: []

Connect to the Server

To make communication with the server active, use the connect function.

connect(xcpCh)

Create and View a Measurement List

A measurement in XCP represents a variable in the memory of the model. Measurements available
from the server are defined in the A2L-file. One way to read measurement data is using dynamic DAQ
lists. Use the createMeasurementList function to create a dynamic DAQ list with a specified event
used to trigger the data acquisition and measurements that comprise the list.

createMeasurementList(xcpCh, "DAQ", "100 ms", ["Sine", "SineAfterGain", "SineAfterTable"])

View configured dynamic DAQ lists using the viewMeasurementLists function.

viewMeasurementLists(xcpCh)

DAQ List #1 using the "100 ms" event @ 0.100000 seconds and the following measurements:
 Sine
 SineAfterGain
 SineAfterTable

Acquire Data form XCP server

Start the configured dynamic DAQ list using the startMeasurement function. It begins the
transmission of DAQ data from the server and stores the DAQ data in the XCP channel. After running
for a few seconds, stop measurements using the stopMeasurement function.

startMeasurement(xcpCh)
pause(3);
stopMeasurement(xcpCh)

 Read XCP Measurements with Dynamic DAQ Lists

14-249

Retrieve the Sine Measurement Data

To retrieve the acquired data from the XCP channel for the Sine measurement, use the readDAQ
function. The function requires a reference to the XCP channel and the specified measurement to
read. readDAQ returns all available samples held by the XCP channel. Measurement data returned by
readDAQ is fully scaled using the compute methods defined for the measurement in the A2L-file.

dataSine = readDAQ(xcpCh, "Sine");
plot(dataSine, "o-")
title("Sine Measurement Data")
xlabel("Data Point")
ylabel("Data Value")

Retrieve the SineAfterGain Measurement Data

To retrieve the acquired data from the XCP channel for the SineAfterGain measurement, use the
readDAQ function.

dataSineAfterGain = readDAQ(xcpCh, "SineAfterGain");
plot(dataSineAfterGain, "o-")
title("SineAfterGain Measurement Data")
xlabel("Data Point")
ylabel("Data Value")

14 Vehicle Network Toolbox Examples

14-250

Retrieve the SineAfterTable Measurement Data

To retrieve the acquired data from the XCP channel for the SineAfterTable measurement, use the
readDAQ function.

dataSineAfterTable = readDAQ(xcpCh, "SineAfterTable");
plot(dataSineAfterTable, "o-")
title("SineAfterTable Measurement Data")
xlabel("Data Point")
ylabel("Data Value")

 Read XCP Measurements with Dynamic DAQ Lists

14-251

Disconnect from the Server

To make communication with the server inactive, use the disconnect function. The XCP server can
be safely closed after disconnecting.

disconnect(xcpCh)

Clean Up

clear a2lInfo

14 Vehicle Network Toolbox Examples

14-252

Get Started with CAN Communication in Simulink
This example shows how to use MathWorks virtual CAN channels to set up transmission and
reception of CAN messages in Simulink. The virtual channels are connected in a loopback
configuration.

Vehicle Network Toolbox provides Simulink blocks for transmitting and receiving live messages via
Simulink models over networks using the Controller Area Network (CAN) format. This example uses
the CAN Configuration, CAN Pack, CAN Transmit, CAN Receive, and CAN Unpack blocks to perform
data transfer over a CAN bus.

Transmit and Receive CAN Messages

Create a model to transmit and receive a CAN message carrying a sine wave data signal. The model
transmits a single message per timestep. A DBC-file defines the message and signal used in the
model.

Process CAN Messages

The CAN Receive block generates a function-call trigger if it receives a new message at any
particular timestep. This indicates to other blocks in the model that a message is available for
decoding activities. Signal decoding and processing is performed inside the Function-Call Subsystem
(Simulink).

 Get Started with CAN Communication in Simulink

14-253

Visualize Signal Data

Plot the sine wave values before and after transmission. The X-axis corresponds to the simulation
timestep and the Y-axis corresponds to the value of the signal. The phase shift between the two plots
represents the propagation delay as the signal travels across the network.

14 Vehicle Network Toolbox Examples

14-254

Extend the Example

This example uses MathWorks virtual CAN channels. You can connect your models to other supported
hardware. You can also modify the model to transmit at periodic rates.

 Get Started with CAN Communication in Simulink

14-255

Work with Unfinalized and Unsorted MDF-Files
This example shows how to work with unfinalized and unsorted MDF-files. The unfinalized MDF-file
used in this example, MDFUnfinalized.MF4, was recorded by a CANedge2 CAN bus data logger
from CSS Electronics.

Introduction to Unfinalized and Unsorted MDF-Files

Sometimes an MDF-file creator tool can experience a premature termination caused by an
unexpected power-down or an application error. In such cases, the MDF-file might be left in an
unfinalized state, possibly violating certain format rules of the ASAM MDF standard or causing data
loss during read operations.

In general, a data group can be either sorted or unsorted. Some recording tools write unsorted MDF-
files without sorting them after the recording completes. A sorted data group cannot contain more
than one channel group, while an unsorted data group may contain several channel groups. If all data
groups in an MDF-file are sorted, the MDF-file is sorted; if at least one data group is unsorted, the
entire MDF-file is unsorted.

An unfinalized MDF-file can be either sorted or unsorted. Conversely, an unsorted MDF-file can be
either finalized or unfinalized.

Use Unfinalized MDF-Files in MATLAB

Because unfinalized files can contain format issues and lead to unreliable read operations, an error is
thrown when attempting to open an unfinalized MDF-file using the mdf function.

try
 m = mdf("MDFUnfinalized.MF4")
catch ME
 disp(ME.message)
end

Cannot perform operation on unfinalized file. Use mdfFinalize to create a finalized file.

You can finalize an unfinalized MDF-file using the function mdfFinalize. If the MDF-file is both
unfinalized and unsorted, mdfFinalize also attempts to sort the file as part of the finalization
process.

Use Finalized but Unsorted MDF-Files in MATLAB

If an MDF-file is finalized but unsorted, you can open the file using the mdf function, but an error
might occur if you subsequently try to read data from the unsorted file using the read function.

You can sort a finalized but unsorted MDF-file using function mdfSort. If the unsorted MDF-file is
also unfinalized, using mdfSort on the file causes an error. Instead, use mdfFinalize to finalize and
sort the file at the same time.

This example continues to demonstrate the use of mdfFinalize with unfinalized MDF-files.
However, you can follow a similar workflow to use the mdfSort function on finalized but unsorted
MDF-files.

Finalize an MDF-File In-Place

The mdfFinalize function allows you to finalize an unfinalized MDF-file in place by overwriting the
source file with a finalized copy.

14 Vehicle Network Toolbox Examples

14-256

https://www.csselectronics.com/
https://www.asam.net/standards/detail/mdf/

For demonstration purposes, make a copy of the original file using copyfile, and use the extra copy
MDFFinalizedInPlace.MF4 in the subsequent finalization operation.

copyfile("MDFUnfinalized.MF4", "MDFFinalizedInPlace.MF4")

Use mdfFinalize with only the source file name MDFFinalizedInPlace.MF4 specified to create a
finalized copy that overwrites itself. The function returns the full path of the finalized file.

finalizedPath1 = mdfFinalize("MDFFinalizedInPlace.MF4")

finalizedPath1 =
'C:\Users\michellw\Documents\MATLAB\Examples\vnt-ex16754708\MDFFinalizedInPlace.MF4'

MDFFinalizedInPlace.MF4 is now finalized and can be opened using the mdf function. You can
specify the full path returned by mdfFinalize. Alternatively, specify the file name if it is located on
MATLAB path.

m1 = mdf(finalizedPath1)

m1 =
 MDF with properties:

 File Details
 Name: 'MDFFinalizedInPlace.MF4'
 Path: 'C:\Users\michellw\Documents\MATLAB\Examples\vnt-ex16754708\MDFFinalizedInPlace.MF4'
 Author: ''
 Department: ''
 Project: ''
 Subject: ''
 Comment: ''
 Version: '4.11'
 DataSize: 2596814
 InitialTimestamp: 2021-04-12 10:06:43.000000000

 Creator Details
 ProgramIdentifier: 'CE '
 Creator: [1×1 struct]

 File Contents
 Attachment: [0×1 struct]
 ChannelNames: {8×1 cell}
 ChannelGroup: [1×8 struct]

 Options
 Conversion: Numeric

Inspect the Sorted field of each channel group struct. Note that all channel groups are sorted now.

[m1.ChannelGroup.Sorted]

ans = 1×8 logical array

 1 1 1 1 1 1 1 1

When the MDF-file is finalized and sorted, you can proceed to use all MDF functionaly, such as
extracting data using the read function.

 Work with Unfinalized and Unsorted MDF-Files

14-257

Finalize an MDF-File Out-of-Place

The mdfFinalize function also allows you to finalize an unfinalized MDF-file out-of-place by creating
a separate finalized copy. Call the function specifying both the source file name and a destination file
name.

finalizedPath2 = mdfFinalize("MDFUnfinalized.MF4", "MDFFinalizedOutOfPlace.MF4")

finalizedPath2 =
'C:\Users\michellw\Documents\MATLAB\Examples\vnt-ex16754708\MDFFinalizedOutOfPlace.MF4'

MDFFinalizedOutOfPlace.MF4 is a newly created finalized copy and can be opened using the mdf
function.

m2 = mdf(finalizedPath2)

m2 =
 MDF with properties:

 File Details
 Name: 'MDFFinalizedOutOfPlace.MF4'
 Path: 'C:\Users\michellw\Documents\MATLAB\Examples\vnt-ex16754708\MDFFinalizedOutOfPlace.MF4'
 Author: ''
 Department: ''
 Project: ''
 Subject: ''
 Comment: ''
 Version: '4.11'
 DataSize: 2596814
 InitialTimestamp: 2021-04-12 10:06:43.000000000

 Creator Details
 ProgramIdentifier: 'CE '
 Creator: [1×1 struct]

 File Contents
 Attachment: [0×1 struct]
 ChannelNames: {8×1 cell}
 ChannelGroup: [1×8 struct]

 Options
 Conversion: Numeric

Inspect the Sorted field of each channel group struct. Note that all channel groups are sorted now.

[m2.ChannelGroup.Sorted]

ans = 1×8 logical array

 1 1 1 1 1 1 1 1

When the MDF-file is finalized and sorted, you can proceed to use all MDF functionality, such as
extracting data using the read function.

14 Vehicle Network Toolbox Examples

14-258

Close and Delete Created MDF-Files

Close access to the finalized MDF-files created in this example by clearing their variables from the
workspace.

clear m1 m2

Delete the MDF-files created in this example to clean up the working directory.

delete MDFFinalizedInPlace.MF4 MDFFinalizedOutOfPlace.MF4

Conclusion

Similar to mdfFinalize, the mdfSort function supports sorting operations both in-place and out-of-
place. You can apply the same workflow to sort unsorted MDF-files.

To summarize:

• If an MDF-file is finalized and sorted, it can be opened using mdf and data can be read using
read.

• If an MDF-file is finalized and unsorted, it can be opened using mdf but data cannot be read using
read. Use mdfSort to sort the file.

• If an MDF-file is unfinalized and sorted, it cannot be opened using mdf. Use mdfFinalize to
finalize the file.

• If an MDF-file is unfinalized and unsorted, it cannot be opened using mdf. Use mdfFinalize to
finalize and sort the file.

 Work with Unfinalized and Unsorted MDF-Files

14-259

CAN Message Reception Behavior in Simulink
This example shows how to observe the message processing behaviors of the CAN Receive and CAN
Unpack blocks in multiple modeling scenarios. This example demonstrates two cases, with and
without using the function trigger f() port of the CAN Receive block. The outputs of the model
indicate the number of CAN messages unpacked for downstream processing in each case. The
example uses MathWorks virtual CAN channels to send CAN messages from MATLAB to the Simulink
model. These modeling practices and behavior also apply to the CAN FD protocol using the Vehicle
Network Toolbox CAN FD blocks.

Explore the Example Model

The example model contains a CAN Receive block configured for Mathworks virtual channels
sampling every 500 ms. The received CAN messages are unpacked in two ways:

• A CAN Unpack block inside a function-call subsystem, triggered by the function trigger f() port
of the CAN Receive block.

• A CAN Unpack block connected directly to the CAN Msg output port.

Scopes are placed to view the received signals in both cases. Also, the signal values from the output
port of the CAN Unpack blocks are exported to the MATLAB workspace, and used to plot the results.

open CanReceiveModel

Prepare the CAN Messages for Transmission

To demonstrate the operation of the model, CAN messages are sent from MATLAB. The messages are
loaded from the provided MAT-file. A canChannel is created to transmit the data later in this
example. The messages to send are timed periodically at 100 ms, and the contained signal data is
incrementing linearly.

load canMessages.mat
txCh = canChannel("MathWorks","Virtual 1", 1);

Execute the Model and Replay CAN Messages from MATLAB

Assign a finite simulation time and run the model.

simTime = 10;
set_param("CanReceiveModel","StopTime",num2str(simTime))
set_param("CanReceiveModel","SimulationCommand","start")

Pause script execution until the model is recognized as fully started.

14 Vehicle Network Toolbox Examples

14-260

while strcmp(get_param("CanReceiveModel","SimulationStatus"),"stopped")
end

Start the CAN channel and execute the replay of the loaded CAN messages.

start(txCh);
replay(txCh, canMessages);

As the replay happens, the CAN Receive block in the model is receiving and processing the messages.
You can view the signal values received in real time in the scopes placed inside and outside of the
function-call subsystem. Wait until the model finishes simulation to continue.

Explore Received Data Handling Results

The scopes provided in the model show the signal values from the messages received inside and
outside the function-call subsystem as they are unpacked. The following views show the scopes after
the model finishes simulation. Note these differences:

• Inside function-call subsystem: 4-6 messages with increasing signal values are received at every
sample time. As such, all CAN messages from the replay were individually received, triggered to
the subsystem, and processed by the CAN Unpack block inside the subsystem per sample time.

• Outside function-call subsystem: One message with a jump in signal value is received at every
sample time. As such, only the latest CAN message from the replay per sample time was provided
to and processed by the CAN Unpack block. The other intermediate messages are not processed.

 CAN Message Reception Behavior in Simulink

14-261

14 Vehicle Network Toolbox Examples

14-262

Using the exported model signal values from the output port of the CAN Unpack blocks, a plot
compares both cases. The function used to plot the results, is included with this example and
configured to execute in the Stop Function callback of the model, so that it is executed when the
model stops simulation.

The CAN message transmission occurred periodically every 100 ms, while the CAN Receive block
sampled at 500 ms. So, in every sample there are 4-6 CAN messages. The following conclusions can
be drawn from these waveforms:

Case 1: Unpacking the CAN messages using function trigger (inside function-call
subsystem) unpacks all the messages received in each sample.

• Multiple signal values are observed at each sample time.
• The linearly increasing value of the signals indicates that all the messages in every sample time

are unpacked.
• No data is suppressed this way, as the function-call subsystem is triggered for each message

received and unpacking is done inside it.

Case 2: Unpacking the CAN messages without using function trigger (outside function-call
subsystem) unpacks only the latest message in each sample.

• Only one signal value is observed at each sample time.
• Therefore only one CAN message is unpacked at each sample time.
• Only the latest message in the sample is unpacked at each sample time.
• All other messages, except the latest one, are suppressed in each sample.

 CAN Message Reception Behavior in Simulink

14-263

In summary, the function trigger port of the CAN Receive block is used to unpack all the messages
received every sample time. If not used, then only the latest message is unpacked in each sample
time. Choose the model behavior based on the requirement of your system and data processing
needs.

14 Vehicle Network Toolbox Examples

14-264

Read XCP Measurements with Direct Acquisition
This example shows how to use the XCP protocol capability to connect and acquire data from a
Simulink model deployed to a Windows executable. The example reads measurement parameters of
the model using TCP and direct memory access. XCP is a high-level protocol used for accessing and
modifying internal parameters and variables of a model, algorithm, or ECU. For more information,
refer to the ASAM standards.

Algorithm Overview

The algorithm used in this example is a Simulink model built and deployed as an XCP server. The
model has already been compiled and is available to run in the file
XCPServerSineWaveGenerator.exe. Additionally, an A2L-file is provided in
XCPServerSineWaveGenerator.a2l as an output of that build process. The model contains three
measurements and two characteristics accessible via XCP. Because the model is already deployed,
Simulink is not required to run this example. The following image illustrates the model.

For details about how to build a Simulink model, including an XCP server and generating an A2L-file,
see “Export ASAP2 File for Data Measurement and Calibration” (Simulink Coder).

Run the XCP Server Model

To communicate with the XCP server, the deployed model must be run. By using the system function,
you can execute the XCPServerSineWaveGenerator.exe from inside MATLAB. The function

 Read XCP Measurements with Direct Acquisition

14-265

https://www.asam.net/standards/detail/mcd-1-xcp/

requires constructing an argument list pointing to the executable. A separate command window
opens and shows running outputs from the server.

sysCommand = ['"', fullfile(pwd, 'XCPServerSineWaveGenerator.exe'),'"', ' &'];
system(sysCommand);

Open the A2L-File

An A2L-file is required to establish a connection to the XCP server. The A2L-file describes all of the
functionality and capability that the XCP server provides, as well as the details of how to connect to
the server. Use the xcpA2L function to open the A2L-file that describes the server model.

a2lInfo = xcpA2L("XCPServerSineWaveGenerator.a2l")

a2lInfo =
 A2L with properties:

 File Details
 FileName: 'XCPServerSineWaveGenerator.a2l'
 FilePath: 'C:\Users\kuanliu\OneDrive - MathWorks\Documents\MATLAB\Examples\vnt-ex50006896\XCPServerSineWaveGenerator.a2l'
 ServerName: 'ModuleName'
 Warnings: [0×0 string]

 Parameter Details
 Events: {'100 ms'}
 EventInfo: [1×1 xcp.a2l.Event]
 Measurements: {'Sine' 'SineAfterGain' 'SineAfterTable' 'XCPServer_DW.lastCos' 'XCPServer_DW.lastSin' 'XCPServer_DW.systemEnable'}
 MeasurementInfo: [6×1 containers.Map]
 Characteristics: {'Gain' 'ydata'}
 CharacteristicInfo: [2×1 containers.Map]
 AxisInfo: [1×1 containers.Map]
 RecordLayouts: [4×1 containers.Map]
 CompuMethods: [3×1 containers.Map]
 CompuTabs: [0×1 containers.Map]
 CompuVTabs: [0×1 containers.Map]

 XCP Protocol Details
 ProtocolLayerInfo: [1×1 xcp.a2l.ProtocolLayer]
 DAQInfo: [1×1 xcp.a2l.DAQ]
 TransportLayerCANInfo: [0×0 xcp.a2l.XCPonCAN]
 TransportLayerUDPInfo: [0×0 xcp.a2l.XCPonIP]
 TransportLayerTCPInfo: [1×1 xcp.a2l.XCPonIP]

TCP is the transport protocol used to communicate with the XCP server. Details for the TCP
connection, such as the IP address and port number, are contained in the TransportLayerTCPInfo
property.

a2lInfo.TransportLayerTCPInfo

ans =
 XCPonIP with properties:
 CommonParameters: [1×1 xcp.a2l.CommonParameters]
 TransportLayerInstance: ''
 Port: 17725
 Address: 2.1307e+09
 AddressString: '127.0.0.1'

14 Vehicle Network Toolbox Examples

14-266

Create an XCP Channel

To create an active XCP connection to the server, use the xcpChannel function. The function
requires a reference to the server A2L-file and the type of transport protocol to use for messaging
with the server.

xcpCh = xcpChannel(a2lInfo, "TCP")

xcpCh =
 Channel with properties:

 ServerName: 'ModuleName'
 A2LFileName: 'XCPServerSineWaveGenerator.a2l'
 TransportLayer: 'TCP'
 TransportLayerDevice: [1×1 struct]
 SeedKeyDLL: []

Connect to the Server

To activate communication with the server, use the connect function.

connect(xcpCh)

Directly Acquire Measurement Data

A measurement in XCP represents a variable in the memory of the model. Measurements available
from the server are defined in the A2L-file. One way to read measurement data is using direct
memory access. The readMeasurement function acquires the current value for a given measurement
from the server. It is a single read at this moment without buffering.

readMeasurement(xcpCh, "Sine")

ans = -0.9511

readMeasurement(xcpCh, "SineAfterGain")

ans = -1.1756

readMeasurement(xcpCh, "SineAfterTable")

ans = 0

Continuously Acquire Measurement Data

It might be necessary to read a measurement continuously at some regular interval, such as for
visualizing a value in a custom UI or using the value as input to some processing code. In such cases,
readMeasurement is callable at any type of interval driven by a timer or loop. Below,
readMeasurement is called in a fixed loop with no delay to accumulate and plot the values read. The
value of the measurement is continuously changing in the memory of model, so not every data change
is reflected in the plot as the values are relative to the rate of the read call itself. Reading
measurements this way is best suited for asynchronous or low frequency purposes.

allSamples = zeros(30,1);
for ii = 1:30
 allSamples(ii) = readMeasurement(xcpCh, "Sine");
end
plot(allSamples, "o-")

 Read XCP Measurements with Direct Acquisition

14-267

title("Sine Measurement Data")
xlabel("Data Point")
ylabel("Data Value")

Disconnect from the Server

To deactivate communication with the server, use the disconnect function. The XCP server can be
safely closed after disconnecting.

disconnect(xcpCh)

Clean Up

clear a2lInfo

14 Vehicle Network Toolbox Examples

14-268

	Getting Started
	Vehicle Network Toolbox Product Description
	Toolbox Characteristics and Capabilities
	Vehicle Network Toolbox Characteristics
	Interaction Between the Toolbox and Its Components
	Prerequisite Knowledge

	MathWorks Virtual Channels
	Description
	Examples

	Vehicle Network Communication in MATLAB
	Transmit Workflow
	Receive Workflow

	Transmit and Receive CAN Messages
	Discover Installed Hardware
	Create CAN Channels
	Configure Channel Properties
	Start the Channels
	Create a Message
	Pack a Message
	Transmit a Message
	Receive a Message
	Unpack a Message
	Save and Load CAN Channels
	Disconnect Channels and Clean Up

	Filter Messages
	Multiplex Signals
	Configure Silent Mode

	Hardware Support Package Installation
	Install Hardware Support Package for Device Driver
	Install Support Packages
	Update or Uninstall Support Packages

	CAN Communication Workflows
	CAN Transmit Workflow
	CAN Receive Workflow

	Using a CAN Database
	Load .dbc Files and Create Messages
	Vector CAN Database Support
	Load the CAN Database
	Create a CAN Message
	Access Signals in the Constructed CAN Message
	Add a Database to a CAN Channel
	Update Database Information

	View Message Information in a CAN Database
	View Signal Information in a CAN Message
	Attach a CAN Database to Existing Messages

	XCP Communication Workflows
	XCP Database and Communication Workflow

	Universal Measurement & Calibration Protocol (XCP)
	XCP Hardware Connection
	Create XCP Channel Using CAN Device
	Configure the Channel to Unlock the Server

	Read a Single Value
	Write a Single Value
	Read a Calibrated Measurement
	Acquire Measurement Data via Dynamic DAQ Lists
	Stimulate Measurement Data via Dynamic STIM Lists

	J1939
	J1939 Interface
	J1939 Parameter Group Format
	J1939 Network Management
	Address Claiming

	J1939 Transport Protocols
	J1939 Channel Workflow

	CAN Communications in Simulink
	Vehicle Network Toolbox Simulink Blocks
	CAN Communication Workflows in Simulink
	Message Transmission Workflow
	Message Reception Workflow

	Open the Vehicle Network Toolbox Block Library
	Using the Simulink Library Browser
	Using the MATLAB Command Window

	Build CAN Communication Simulink Models
	Build the Message Transmit Part of the Model
	Build the Message Receive Part of the Model
	Save and Run the Model

	Create Custom CAN Blocks
	Blocks Using Simulink Buses
	Blocks Using CAN Message Data Types

	Supported Block Features
	CAN Communication
	CAN FD Communication
	XCP Communication
	J1939 Communication

	Timing in Hardware Interface Models
	Simulation Time
	Block Sample Time
	Pacing Model Simulation

	Hardware Limitations
	Vector Hardware Limitations
	Kvaser Hardware Limitations
	National Instruments Hardware Limitations
	File Format Limitations
	MDF-File
	CDFX-File
	BLF-File

	Platform Support
	Troubleshooting MDF Applications
	Error When Creating mdf Object
	Error When Reading an MDF-File
	Error When Reading an MDFDatastore
	Unable to Find Specific Channel
	Unable to Save MDF Attachments
	Unable to Read Array Channel Structures
	Unable to Read MIME and CANopen Data
	Table Column Names Do Not Match Channel Names

	XCP Communications in Simulink
	Vehicle Network Toolbox XCP Simulink Blocks
	Open the Vehicle Network Toolbox XCP Block Libraries
	Using the MATLAB Command Window
	Using the Simulink Library Browser

	Functions
	attachDatabase
	attributeInfo
	blfinfo
	blfread
	blfwrite
	canChannel
	can.ChannelInfo
	canChannelList
	canDatabase
	CAN Explorer
	canFDChannel
	canFDChannelList
	CAN FD Explorer
	canFDMessage
	canFDMessageBusType
	canFDMessageReplayBlockStruct
	canFDMessageTimetable
	canHWInfo
	canMessage
	canMessageBusType
	canMessageImport
	canMessageReplayBlockStruct
	canMessageTimetable
	canSignalImport
	canSignalTimetable
	canSupport
	can.VendorInfo
	cdfx
	channelList
	configBusSpeed
	configBusSpeed
	connect
	createMeasurementList
	discard
	discard
	disconnect
	extractAll
	extractAll
	extractRecent
	extractRecent
	extractTime
	extractTime
	filterAllowAll
	filterAllowAll
	filterAllowOnly
	filterAllowOnly
	filterBlockAll
	filterBlockOnly
	freeMeasurementLists
	getCharacteristicInfo
	getEventInfo
	getMeasurementInfo
	getValue
	hasdata
	instanceList
	isConnected
	isMeasurementRunning
	j1939Channel
	j1939ParameterGroup
	j1939ParameterGroupImport
	j1939ParameterGroupTimetable
	j1939SignalTimetable
	mdf
	mdfDatastore
	mdfFinalize
	mdfInfo
	mdfSort
	mdfVisualize
	messageInfo
	nodeInfo
	numpartitions
	pack
	partition
	preview
	read
	read
	readall
	readAxis
	readCharacteristic
	readDAQ
	readDAQListData
	readMeasurement
	readSingleValue
	receive
	receive
	replay
	reset
	saveAttachment
	setValue
	signalInfo
	start
	start
	startMeasurement
	stop
	stop
	stopMeasurement
	systemList
	transmit
	transmit
	transmitConfiguration
	transmitEvent
	transmitPeriodic
	unpack
	valueTableText
	viewMeasurementLists
	write
	writeAxis
	writeCharacteristic
	writeMeasurement
	writeSingleValue
	writeSTIM
	writeSTIMListData
	xcpA2L
	xcpChannel

	Properties by Class
	can.Channel
	can.Message
	can.Database
	j1939.Channel
	j1939.ParameterGroup
	xcp.A2L
	xcp.Channel

	Blocks
	CAN Configuration
	CAN FD Configuration
	CAN FD Log
	CAN FD Pack
	CAN FD Receive
	CAN FD Replay
	CAN FD Transmit
	CAN FD Unpack
	CAN Log
	CAN Pack
	CAN Receive
	CAN Replay
	CAN Transmit
	CAN Unpack
	J1939 CAN Transport Layer
	J1939 Network Configuration
	J1939 Node Configuration
	J1939 Receive
	J1939 Transmit
	XCP CAN Configuration
	XCP CAN Data Acquisition
	XCP CAN Data Stimulation
	XCP CAN Transport Layer
	XCP UDP Bypass
	XCP UDP Configuration
	XCP UDP Data Acquisition
	XCP UDP Data Stimulation

	Vehicle Network Toolbox Examples
	Get Started with CAN Communication in MATLAB
	Get Started with CAN FD Communication in MATLAB
	Use Message Reception Callback Functions in CAN Communication
	Use Message Filters in CAN Communication
	Use DBC-Files in CAN Communication
	Periodic CAN Communication in MATLAB
	Event-Based CAN Communication in MATLAB
	Use Relative and Absolute Timestamps in CAN Communication
	Get Started with J1939 Parameter Groups in MATLAB
	Get Started with J1939 Communication in MATLAB
	Periodic CAN Message Transmission Behavior in Simulink
	Event-Based CAN Message Transmission Behavior in Simulink
	Set up Communication Between Host and Target Models
	Log and Replay CAN Messages
	Get Started with J1939 Communication in Simulink
	Get Started with MDF-Files
	Read Data from MDF-Files
	Get Started with MDF Datastore
	CAN Connectivity in a Robotics Application
	CAN Connectivity in an Automotive Application
	Get Started with CAN FD Communication in Simulink
	Forward Collision Warning Application with CAN FD and TCP/IP
	Data Analytics Application with Many MDF-Files
	Log and Replay CAN FD Messages
	Map Channels from MDF-Files to Simulink Model Input Ports
	Get Started with CDFX-Files
	Use CDFX-Files with Simulink
	Use CDFX-Files with Simulink Data Dictionary
	Develop an App Designer App for a Simulink Model Using CAN
	Programmatically Build Simulink Models for CAN Communication
	Class-Based Unit Testing of Automotive Algorithms via CAN
	Decode CAN Data from BLF-Files
	Decode CAN Data from MDF-Files
	Read Data from MDF-Files with Applied Conversion Rules
	Receive and Visualize CAN Data Using CAN Explorer
	Receive and Visualize CAN FD Data Using CAN FD Explorer
	Decode J1939 Data from BLF-Files
	Decode J1939 Data from MDF-Files
	Replay J1939 Logged Field Data to a Simulation
	Calibrate XCP Characteristics
	Get Started with A2L-Files
	Analyze Data Using MDF Datastore and Tall Arrays
	Read XCP Measurements with Dynamic DAQ Lists
	Get Started with CAN Communication in Simulink
	Work with Unfinalized and Unsorted MDF-Files
	CAN Message Reception Behavior in Simulink
	Read XCP Measurements with Direct Acquisition

